
3

Using Relative Lines of Code to Guide Automated Test
Generation for Python

JOSIE HOLMES, School of Informatics, Computing & Cyber Systems, Northern Arizona University
IFTEKHAR AHMED, Donald Bren School of Information and Computer Sciences, University of California,
Irvine
CAIUS BRINDESCU, School of Electrical Engineering and Computer, Oregon State University
RAHULGOPINATH, Center for IT-Security, Privacy and Accountability (CISPA), University of Saarbrücken
HE ZHANG, School of Electrical Engineering and Computer, Oregon State University
ALEX GROCE, School of Informatics, Computing & Cyber Systems, Northern Arizona University

Raw lines of code (LOC) is a metric that does not, at �rst glance, seem extremely useful for automated
test generation. It is both highly language-dependent and not extremely meaningful, semantically, within a
language: one coder can produce the same e�ect with many fewer lines than another. However, relative LOC,
between components of the same project, turns out to be a highly useful metric for automated testing. In
this paper, we make use of a heuristic based on LOC counts for tested functions to dramatically improve the
e�ectiveness of automated test generation. �is approach is particularly valuable in languages where collecting
code coverage data to guide testing has a very high overhead. We apply the heuristic to property-based
Python testing using the TSTL (Template Scripting Testing Language) tool. In our experiments, the simple
LOC heuristic can improve branch and statement coverage by large margins (o�en more than 20%, up to 40%
or more), and improve fault detection by an even larger margin (usually more than 75%, and up to 400% or
more). �e LOC heuristic is also easy to combine with other approaches, and is comparable to, and possibly
more e�ective than, two well-established approaches for guiding random testing.

CCS Concepts: •So�ware and its engineering →So�ware testing and debugging;

Additional Key Words and Phrases: automated test generation, static code metrics, testing heuristics

ACM Reference format:
Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce. 2019. Using
Relative Lines of Code to Guide Automated Test Generation for Python. ACM Trans. So�w. Eng. Methodol. 1,
2, Article 3 (February 2019), 38 pages.
DOI: 10.475/123 4

1 INTRODUCTION
Lines of code (LOC) is an extremely simple way to measure the size or complexity of a so�ware
system or component. It has clear disadvantages. First, unless care is taken, the measure itself is
ambiguous, in that “lines of code” may mean number of carriage returns or number of statements,
may include comments, and so forth. Second, lines of code are not comparable across languages:
10 lines of C and 10 lines of Haskell are not the same, which is evident even in the size of faults
in these languages [43]. Finally, even within the same language, two di�erent programmers may
express the same functionality using di�erent amounts of code. E.g., in a language like Python, the

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s). 1049-331X/2019/2-ART3 $15.00
DOI: 10.475/123 4

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:2 Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

same list may be constructed using a �ve LOC loop or a single LOC list comprehension. In some
cases, such di�erences in LOC for the same functionality will signify a di�erence in complexity,
but in other cases the conceptual and computational complexity will be identical, despite LOC
di�erences (e.g., chaining vs. sequential styles in DSLs, as discussed by Fowler [35]).

Is measuring lines of code, then, pointless, except for very coarse purposes such as establishing
the approximate size of so�ware systems: e.g., Mac OS X at 50 million LOC is much larger than
Google Chrome at 5 million LOC, which is much larger than an AVL tree implementation at
300 LOC? We argue that, to the contrary, counting LOC is the basis for a powerful heuristic for
improving automated test generation methods based on random testing. In particular, we show that
measuring relative LOC between components of a so�ware system does provide useful information
for test generation. By relative LOC we mean that we are not so much concerned with the absolute
LOC size of a program element, but with whether one program element is larger or smaller than
another, and by how much. Our claim is that, while LOC is certainly imprecise as a measure of
code complexity or importance, the assumption that relatively larger functions are usually more
complex, more error-prone, and more critical for exploring system state is actionable: we show
that using LOC to bias random testing is an e�ective heuristic approach for generating tests for
Python APIs.

1.1 Small-Budget Automated Test Generation
�ickCheck [25] and other increasingly popular property-based testing tools [69, 89] o�er very
rapid automatic testing of so�ware, on the �y, based on random testing [10, 54]. For the So�ware
Under Test (SUT), a property-based testing tool allows a user to specify some correctness properties
(and usually includes some default properties, such as that executions do not throw uncaught
exceptions), and generates random input values for which the properties are checked. Developers
seem to expect such tools to conduct their testing within at most a minute, in order to provide
rapid feedback on newly introduced faults during development, when the fault is easiest to identify
and �x. �e claim that a minute is a typical expectation derives the default one minute timeout
for the very widely adopted Python Hypothesis [69] testing tool (one of the most sophisticated
�ickCheck variants, used in more than 500 open source projects [73]), and the fact that the
original �ickCheck and many imitators such as ScalaCheck [82], PropEr [89], and the Racket
version of �ickCheck use a default of only 100 random tests, which will typically require far less
than a minute to perform. Tools for generating Java unit tests, such as EvoSuite [36] and Randoop
[87] also have default timeouts of one minute and 100 seconds per class to be tested, respectively.
In fact, to our knowledge, all automated testing tools in wide adoption use a default budget close to
60 seconds or 100 tests, with the exception of fuzzers like afl-fuzz [113] intended to detect subtle
security vulnerabilities. Testing with a limited budget is critical for using property-based testing in
a continuous integration se�ing, where testing time per-task on a large project is limited [24] to
ensure rapid feedback [55].

Unfortunately, one minute is o�en not enough time to e�ectively generate tests for an SUT
using pure random testing. It is unlikely that low-probability faults will be exposed. Moreover, for
techniques relying on genetic algorithms [80] or other machine-learning techniques [46, 47], the
overhead of learning, or lack of su�cient training data, may still result in poor coverage or fault
detection in a short testing run. Even if developers sometimes perform hour-long or overnight
automated testing runs, it is still desirable to �nd faults or cover code as quickly as possible; poor
60 second performance is in a sense equivalent in property-based testing to having a very slow
compiler in code development.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:3

1.2 The High Cost of Code Coverage
A further key issue in lightweight automated test generation [47], is that many programmers
use languages that lack sophisticated or e�cient coverage instrumentation [23, 111]. In Python,
computing coverage using the coverage.py [13] library (the only mature coverage tool for the
language) to guide testing o�en adds a large overhead, despite its use of a low-level C tracing
implementation. Collecting coverage in Python o�en results in performing far less testing for the
same computational budget; in Section 3.5 we show that turning o� code coverage o�en results in
performing at least 10% more, and up to 50 times as many test actions (e.g. method calls) in practice,
with median improvement in SUTs we studied of 2.03x (and mean improvement of 6.12x). Is the
advantage of coverage-directed testing su�cient to overcome this cost? Even if the answer is
a�rmative for C or Java, with fast coverage tools, the answer may o�en be “no” for languages
with higher overheads. Python is not even the worst case: a newly popular language may lack any
e�ective coverage tool at all; for a long time Rust lacked any convenient way to measure coverage
[96]. Even “good” coverage tools may not have a low enough overhead [2, 84, 105] or conveniently
provide fast enough access to on-the-�y coverage for e�cient testing.

Moreover, testing methods that use coverage information, or even more expensive (and powerful)
tools such as symbolic execution [20, 40] face an inherent limitation. As Böhme and Soumya [15]
argue, given even a perfect method for partitioning system behavior by faults, if the method has a
cost (over that of random testing), it will be less e�ective than random testing, for some test budgets.
Real-world techniques are not perfect in their defect targeting, and o�en impose considerable
costs—this is why performing symbolic execution only on seed tests, generated by some other
method, is now a popular approach in both standard automated test generation and security-based
fuzzing [41, 77, 90, 114]. Small-budget automated test generation, therefore, stands in need of
more methods that improve on pure random testing but require no additional computational e�ort.
Ideally, such methods should be able, like random testing, to work even without code coverage
support. How can we discover such methods? In a sense, we are searching for the testing equivalent
of a “credit score”—while less accurate than simply making a loan (that is, running a test) to see
how well it performs, it is also much less costly. �e bound on the cost of computing a credit score,
or measuring LOC, is constant and proportionally much smaller than the cost of making a (large)
loan or performing extensive testing. A credit score or rough LOC count is also likely more stable
over time than the details of each proposed loan or set of test executions. In essence, we want
to equate examining program source code in simply ways with performing a (fast, approximate)
credit check.

�e problem is most easily understood when simpli�ed to its essence. Imagine that you have
two functions, f and g. Furthermore, imagine that you can only test one of these functions, once.
Which do you test? Knowing nothing further, you have no way to rationally choose. What might
you know about f and g that would allow you, in the sense of expected-value, to make a more
intelligent decision? You might, of course, wish to know things such as how calling f and g would
typically contribute to improving code coverage for the SUT, or which is more closely related to
critical aspects of the speci�cation, or (most ideally) which one contains a bug. �ese are usually,
unfortunately, very expensive things to discover, and we have already stipulated that you have
very li�le time—only time to run one test of either f or g. If we can propose a very inexpensive-
to-compute heuristic for the “f or g?” question, we have a plausible way to bias small-budget
automated test generation. Of course, we will seldom be faced with testing only f or g, but we
will always face the question of which functions to test more o�en, in such a se�ing, and we will
always have to choose some �nal function to test when our testing budget is about to run out. Even

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:4 Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

techniques that are more complex than pure random testing, such as those used in EvoSuite and
Randoop, rely on the basic building block of choosing an arbitrary method to call.

1.3 Solution: Count Relative Lines of Code
�e central proposal of this paper is that, if you know only that f has more LOC than g, you should
prefer testing f to testing g. LOC allows you to approximate some kind of expectation (though not
a lower bound–it might be easy to cover most of g’s code, and hard to cover more than a line or two
of f) of gain in code coverage, of course, but it should, more importantly, approximate complexity
and in�uence on program state. Not being a lower bound is useful here: we do not want to bias
against functions that have hard-to-cover code; they are precisely the functions we may we need
to test most.

Longer functions are generally more complex, and presumably have more room for programmers
to make mistakes. �is is assumed in, for example, mutation testing [7, 83], where the LOC size of
a function is strongly correlated with the number of mutants generated for that function. However,
even when a longer function does not have any faults, it is still, we claim, usually more important to
test. Longer functions, we expect, perform more computation. In stateful systems, longer functions
tend to modify system state more than shorter ones. Even if a modi�cation is correct, it may cause
other, incorrect, functions to fail. Even for functions with no side e�ects, we hypothesize that
longer pure functions, on average, either take more complex data types as arguments, or return
more complex data types as results than shorter ones. In fact, very short functions in many cases
are ge�ers and se�ers. �ese need to be tested, and sometimes need to be called to detect faults in
more complex code, but are seldom, we suspect, themselves faulty.

Of course, other than the general correlation detected in various studies between defects and LOC
at the function, module, or �le level [5, 34, 85, 86, 115], it is di�cult to know to what precise extent
length ma�ers. However, if our f/g answer is reasonable, it follows that biasing the probabilities for
calling functions/methods in random testing based on the relative LOC in those functions/methods
should improve the e�ectiveness of random testing, for most SUTs. Some caution is required: if a
function f is itself short, but always or almost always calls h, which is long and complex, then in
practice perhaps f is a “long” function. Or, one may argue that since f is longer, it also likely takes
more time to run than g, making it “correct” to choose f, but a di�erent problem than selecting
a next action in random testing. �e alternative to f may not be testing g, but perhaps testing g
three times, or testing g, h, and i, all of which are much shorter than f. Whether our proposed
bias is actually useful in practice is an empirical question, despite having a sound analytical basis,
thanks to these confounding factors, and can be resolved only by experimentation.

�e experiments in this paper, based on a simple linear bias in favor of test actions with relatively
more LOC, demonstrate that our proposed solution to the “f or g?” question is a useful one in
that it o�en improves both coverage and fault detection. We also thus demonstrate the general
method of moving from a plausible answer to the “f or g?” question to improving the e�ectiveness
of automated test generation.

In fact, we show that for many Python SUTs we examined, the LOC heuristic, despite not using
expensive coverage information, is be�er than a coverage-based approach, and has be�er mean
coverage over all SUTs, even though we impose the (unnecessary) cost of collecting coverage on
LOC-guided testing; further, incorporating the LOC heuristic into the coverage-based approach
improves results over using coverage alone, for a large majority of SUTs. �e basic technique is
very simple: we �rst run (pure, unguided) random testing on the SUT once, for a short period
(two minutes, in our experiments) and, for each function or set of function calls that constitute
a single testing action, compute the mean total LOC in all SUT functions and methods executed

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:5

while taking that type of test action. Note that this is not the same as measuring coverage: we
measure (only counting each function once) how large each function executed is, in total LOC,
even if the majority of the code is not executed. �e “sizes” in LOC are then used to bias probabilities
for selecting test actions so that actions with higher LOC counts are chosen more o�en in all future
testing. Unlike dynamic code coverage-based methods, these sizes do not need to be recomputed
for each test run; we show that the technique is robust to even very outdated LOC estimates.

1.4 Contributions
We propose a novel and powerful heuristic for use in (small-budget) automated generation of
property-based Python unit tests, based on counting lines of code in functions under test. We
evaluate the heuristic (and its combination with other testing methods) across a set of 14 Python
libraries, including widely-used real-world systems. Overall, the LOC heuristic improves testing
e�ectiveness for most subjects. �e LOC heuristic also combines well with other test generation
heuristics to increase their e�ectiveness. It is o�en more e�ective than unbiased random testing
by a large margin (20%-40% or more improvement in branch/statement coverage, 30%-400% or
more gain in fault detection rates). �e LOC heuristic, or a combination of the LOC heuristic and
another approach, is the best method for testing more SUTs than any non-LOC approaches, and is
worse than random testing for fewer SUTs than the other two (established and widely used) test
generation methods we tried. Even if the overhead for coverage were negligible, a user would be
best o� using the LOC heuristic or the LOC heuristic plus a coverage-guided genetic algorithm, for
most SUTs. Our results also present a strong argument for exploring the use of simple, almost static
(thus available without learning cost at testing time) metrics of source code to guide small-budget
automated test generation, especially in languages such as Python, where coverage instrumentation
is either very costly or unavailable.

2 LOC-BASED HEURISTICS
We present our basic approach in the context of the TSTL [49, 58] tool for property-based unit
testing of Python programs for several reasons. First, Python is a language with expensive (and
coarse-grained: there is no support for path coverage or coverage counts) code coverage tools.
Second, TSTL is the only tool, to our knowledge, that is focused on generating unit tests (sequences
of value choices, method/function calls, and assertions) yet is essentially a property-based testing
tool [25], where users are expected to provide guidance as to what aspects of an interface are to
be tested and frequently de�ne custom generators or implement complex properties, in exchange
for fast random testing to quickly detect semantic faults in code. A property-based testing tool is
seldom seen as a test suite generator (unlike Randoop or EvoSuite), even though most property-
based tools can also be used to produce test suites. �ickCheck, Hypothesis, PROPER, or TSTL
is usually executed to generate new tests a�er every code change. It is in this se�ing, where
generating new, e�ective tests within a small test budget is a frequently performed task, that the
need for be�er heuristics is largest.

Before proceeding to the detailed Python implementation, we de�ne the general class of LOC-
based heuristics: a LOC based heuristic biases the probability of method or function call
choices in random testing proportionally to the measured lines of code in the method(s)
or function(s) called. In this paper, we present one instantiation of this general idea, tuned to
Python test generation.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:6 Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

@import avl

pool: <int> 4
pool: <avl> 3

property: <avl>.check balanced()

<int> := <[1..20]>
<avl> := avl.AVLTree()

<avl>.insert(<int>)
<avl>.delete(<int>)

Fig. 1. TSTL harness for AVL trees

2.1 General LOC Heuristic Definition
�e general algorithm for LOC heuristics is most easily described by understanding how it changes
the selection of a test action. Assume that test actions {a1 . . . an} are normally chosen with uniform
probability, i.e., P(a) = 1

n . Using LOC, instead, the probabilities are determined based on both an
action set a1 . . . an and a LOC-mapping,m : a ∈ {a1 . . . an} ⇒ k , wherem(a) is a measure (possibly
approximate) of the lines of code potentially (rather than actually) covered by executing a. If a is
a simple function f that calls no other functions, thenm(a) should be the number of lines in the
implementation of the function f . Givenm, when using LOC, P(a) = h(m(a)) where h should be a
monotonically increasing function, except in the special case thatm(a) = 0, as discussed below. It is
the monotonically increasing nature of h that produces the desired bias. In this paper, we consider
only the case where h is a simple linear mapping.

2.2 Python Implementation
In TSTL, tests are composed of a series of actions. An action is a fragment of Python code, usually
either an assignment to a pool value [8] (variables assigned during the test to store either input
values for testing or objects under test), or a function or method call, or an assertion. Actions
basically correspond to what one might expect to see in a single line of a unit test. Constructing
a test in TSTL is essentially a ma�er of choosing the lines that will appear in a constructed unit
test. Actions are grouped into action classes, de�ned in one line of a TSTL test harness [45] �le.
Figure 1 shows part of a simple TSTL harness, for testing an AVL tree (with no properties beyond
that the tree is balanced and does not throw any exceptions). �e line of TSTL code <int> :=
<[1..20]> de�nes an action class that includes many actions: int0 = 2, int1 = 3, and int3 =
10, and so forth. �e AVL harness de�nes 4 action classes (one for each line a�er the property). Of
these, the �rst calls no SUT code (hencem(a) would be 0), while the other three call the AVLTree
constructor or an AVLTree object method, and m(a) would be based on the code in those methods.
�e same (top-level) method is called for each action in an action class, in most, but not all cases;
we examined our SUTs for cases where this was not the case, and found that the top-level method
called could vary in about 20% of all actions. Our heuristic is simple, and operates in two phases:
�rst, a measure of LOC for each action class (a construction ofm(a)) is needed, and then the LOC
measures must be transformed into probabilities for action classes, to bias random testing in favor
of actions with higher LOC values (a function h is de�ned).

2.2.1 Estimating LOC in Test Actions. To bias probabilities by LOC, we need to collect a mapping
from action classes to the LOC in SUT code called by the actions in the class. In theory, this could
be based on static analysis of the call graph; however, in Python determining an accurate call
graph can be very di�cult, due to the extremely dynamic nature of the language. Moreover, we
are generally interested only in functions that have a non-negligible chance of being called during
short-budget testing; calling some functions may not even be possible given the test harness and

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:7

def traceLOC(frame, event, arg):
inputs are provided by the Python runtime
- frame is the current stack frame
- event is one of ’call’, ’line’, ’return’, or ’exception’
- arg is specific to the event type
We care only about function ’call’s; on a call, iff the function was not
previously seen, we 1) mark it as seen in this action and 2) add the
LOC count for the function to the global thisLOCs count, which is
reset before each action in the TSTL testing. Otherwise, we just return.
In any case, we return this function, since Python’s tracing requires
the tracer to return the tracer to use in the future.
global thisLOCs, seenCode
if event != "call": return traceLOC
co = frame.f code
fn = co.co filename
if (co.co name, co.co filename) in seenCode:

return traceLOC
if fn == sut. file .replace(".pyc",".py"):

return traceLOC
seenCode[(co.co name, fn)] = True
thisLOCs += len(inspect.getsourcelines(co)[0])
return traceLOC

Fig. 2. Portion of code for LOC measurement tracing in Python

input ranges used. Our e�orts to collect reliable information statically, based on matching the
textual names in actions to a static list of function sizes generated using Python’s inspection tools,
produced a large improvement in testing for one SUT, but it was generally not very helpful, and
sometimes greatly reduced the e�ectiveness of testing compared to pure random testing; we report
on this in more detail below. �e primary cause was simple inaccuracy, e.g., if an action class varies
which method or function it calls depending on the type of an object in a pool (a fairly common
pa�ern in TSTL), the tool simply counted LOC for the wrong code. �e dynamic nature of Python,
which is exploited heavily in TSTL harnesses, simply defeats a purely-static approach.

Inspecting the incorrect results also helped us see that simply counting LOC in a top-level
function is inappropriate for TSTL/Python. TSTL harnesses seldom include all methods of a class;
instead the testing is focused on the high-level APIs actually used by users, not other functions,
and these are o�en very small wrappers that dispatch to a more complex method. In TSTL, most
coverage can only be obtained indirectly [37].

We therefore used Python’s system tracing and introspection modules to collect a one-time
estimate1 of “total LOC” for each action class for each SUT by detecting function calls during actions
and then measuring LOC reported by Python’s getsourcelines for every such function, using
Python’s settrace feature, as shown in Figure 2; comments in the code describe the algorithm
and some implementation details. It is important to understand that this does not measure code
coverage—it simply collects the total LOC (as counted by Python’s notion of code lines, which
includes blank spaces and comments2) for any Python function or method entered during execution
of a test action, even if almost none of the code for that function/method is executed. �e value
recorded for an action is the sum of function/method LOCs, with each one only counting once
(e.g., if f has 30 LOC and is called 40 times by an action, it only adds 30 to the LOC count for that
action). �e tracing function is installed with sys.settrace before each action is executed. In
order to ensure that all action classes are measured, the sampling tool always selects any enabled

1In Section 3.8 we show that the one-time aspect is likely not important; results appear to be robust even to large code
changes, and thus certainly to mere sample variance.
2Including comments and blank lines is not a problem for our basic hypothesis: we also expect that code with more
comments (or even more blank lines) is, all things being equal, more interesting to test.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:8 Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

actions whose class has not yet been sampled at least once. A�er each action class is sampled once,
sampling is random until a �xed time limit is reached. �e value recorded for each action class’s
LOC count is the mean of all samples: m(a) =

∑
s∈samples LOC(s)
|samples | , where samples is the set of all values

computed using traceLOC for that action class. Taking the mean is required because, again, due to
the highly dynamic nature of TSTL test harnesses, the same action class may not even be calling
the same top-level method in every case. Since we cannot distinguish such cases statically, we
want to know on average “how big” each action class is in terms of LOC. All action classes could
be sampled e�ectively, multiple times, with 120 seconds of sampling for all of our experimental
subjects. Any action classes that cannot be sampled within 120 seconds, using a strong bias in favor
of unsampled classes, are highly unlikely to ever be covered during small-budget testing, in any
case. A�er one such sampling run, the probabilities can be used in any number of future testing
runs, as we show below.

2.2.2 Biasing Probabilities for Action Classes. Given this one-time mapping from action classes
to LOC counts, we need to produce a biased probability distribution for action classes to be selected
in future random testing. Additionally, there must be some way to handle action classes that do not
cover any SUT LOC. �ese action classes cannot be excluded from testing: most harnesses need to
generate simple input data, such as integers or booleans, where generating data does not cover any
code under test. Our solution is simple: we evenly distribute 20% of the probability distribution
among all action classes that do not call any SUT code (where the LOC value is 0). �e remaining
80% is distributed to action classes with a non-zero LOC count in proportion to their share of the
total LOC count for all action classes. �is means that our heuristic does not care about absolute
LOC at all, only relative LOC: it does not ma�er how long a function is, only how much longer (or
shorter) it is than other functions to be tested. �e core idea of our heuristic is this linear bias in
favor of test choices proportional to their share of total LOC count. Formally, we de�ne:

M0 = |a ∈ {a1 . . . an} : m(a) = 0|

M1 =
∑

a∈{a1 ...an }:m(a)>0
m(a)

�at is, M0 is the number of actions (or, here, action classes) with 0 measured LOC, and M1 is
the total sum of all LOC measures for actions/action classes whose LOC estimate is non-zero (of
course, sincem(a) = 0 in these cases, we could also include them in the total).

We can then de�ne h, for the special case of zero-LOC action classes and for other action classes,
thus:

h(0) = 0.2
M0

h(c > 0) = 0.8c
M1

For example, consider a TSTL harness with only three action classes: <int> := <[1..20]>,
f(<int>), and g(<int>). �e �rst action class does not call any SUT code: it simply assigns a
value to be used in later testing. Assume that f calls no functions, but has 30 LOC, and g has 6
LOC itself and always calls h, which has 14 LOC, twice. Using the (mean) LOC counts of 0, 30, and
20, respectively, we get the following probabilities for the action classes, according to the LOC
heuristic:

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:9

Action class Mean LOC Formula P(class)
<int> := <[1..20]> 0 0.20

1 0.20
f(<int>) 30 30

50 × 0.80 0.48
g(<int>) 20 6+14

50 × 0.80 0.32
If we add another action class that does not call any code, and a direct call to h (with 14 LOC),

the probabilities change to:
Action class Mean LOC Formula P(class)
<int> := <[1..20]> 0 0.20

2 0.100
<ch> := <[’r’,’w’]> 0 0.20

2 0.100
f(<int>) 30 30

64 × 0.80 0.375
g(<int>) 20 6+14

64 × 0.80 0.250
h(<ch>) 14 14

64 × 0.80 0.175
One objection to this sampling approach is that it pays a non-negligible measurement cost, unlike

purely static measurement. �is is true, but in another sense there is a fundamental di�erence
between essentially constant-time approaches (measuring LOC in source or �xed-time LOC sampling)
and, e.g., coverage instrumentation that imposes a cost that will always be (at best) linear in the
number of test actions executed. Even so, why not simply run for 120 seconds and measure code
coverage instead of LOC, and use that measure? �ere are two answers. First, the general LOC
idea remains static; in a less dynamic language than Python, it should even be possible to statically
measure the LOC count for a method and the methods it calls, though this would lose the probability
of calling non top-level methods. Second, and more importantly, using coverage is worse, for our
purposes, than using LOC: any single short run is likely to only cover a small part of the code for
any complex function with many hard-to-take branches. LOC is a much be�er way to estimate
maximum possible coverage, since most runs will not cover the interesting (hard to cover) part of
a function. Of course, biasing exploration by coverage is a very useful test-generation method;
however, coverage is so dependent on actual test sequence and values, unlike LOC, that it is only
e�ective in an approach, such as the Genetic Algorithm (GA) we compare with below, using runtime
context and online instrumentation. To clarify the point, consider using our sampling approach to
determine a “size” for a function f that takes a list s as an argument. Even if the function is very
complex and lengthy, in a single short test run, most calls to it may be made with an empty list as
an argument. �at is, if the function looks like:

if len(s) == 0:
return 0

...
40 lines of complex destructuring and tabulation of the list

then the mean coverage for the action calling f will be very low, but the LOC count will re�ect
the fact that when called with a non-empty list the function will perform complex computation,
even if the sampling never calls the function with a non-empty list. Traditional coverage-driven
test generation using, e.g., a GA, relies on the context of a test with a non-empty list to identify
the action calling f as interesting; in fact, such methods usually don’t identify a single action as
interesting itself, but only a test as interesting. �e price to be paid, however, is that coverage
must be collected for every test at runtime. Our approach only instruments test execution during
a one-time sampling phase, and therea�er uses that data to bias test generation. However, as we
show, such a contextless LOC-based overapproximation of size is o�en, even ignoring this price, a
be�er way to bias testing than a GA, for small test budgets.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:10Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

3 EXPERIMENTAL EVALUATION
3.1 Research�estions
Our primary research questions concern the utility of the LOC heuristic.

• RQ1: How does test generation for 60 second budgets using the LOC heuristic compare to
random testing, in terms of fault detection and code coverage?
• RQ2: How does test generation for 60 second budgets using the LOC heuristic compare to

coverage-guided testing using a Genetic Algorithm (GA) approach in the style of EvoSuite
[36], or to swarm testing [52], for fault detection and code coverage?
• RQ3: How does combining orthogonal generation approaches (e.g., a Genetic Algorithm

(GA), but using the LOC heuristic) for 60 second budgets compare to using only one test
generation heuristic, for fault detection and code coverage? Is biasing a more sophisticated
heuristic by also applying the LOC heuristic useful?

Our hypothesis is that using LOC to guide testing will be useful, outperforming, in terms of in-
creased code coverage and/or fault detection for a �xed, small, testing budget, random testing alone
for over 60% of SUTs, and outperforming (by the same measure) established heuristics/methods for
at least 50% of SUTs studied. Further, combining LOC with compatible heuristics will frequently
provide additional bene�ts, improving code coverage and/or fault detection for a given budget.

We also provide limited, exploratory, experimental results to supplement these primary results,
covering a set of related issues; in particular:

• What is the typical cost of measuring code coverage in Python using the best known tool,
the coverage.py library?
• How does test generation for 60 second budgets using the LOC heuristic compare to using
afl-fuzz [113] via the python-afl module?
• Can the LOC heuristic improve the e�ectiveness (as measured by code coverage) of feedback-

directed random testing [87] in Java?
• What is the impact of using outdated dynamic estimates of lines of code on the performance

of the LOC heuristic?
• Do the coverage advantages provided by the LOC heuristic over random testing persist

over time, or are they limited to small budget testing?

3.2 Experimental Setup and Methodology
All experiments were performed on a Macbook Pro 2015 15” model with 16 GB of RAM and 2.8GHz
�ad-core Intel Core i7, running OS X 10.10 and Python 2.7; experiments only used one core.

3.2.1 Evaluation Measures. We report results for both coverage and fault detection for our core
question, small (default) budget test generation effectiveness. �e reasons for the use of two core
measures are simple. Fault detection essentially needs no justi�cation: it is the end-goal of so�ware
testing, in that a test e�ort that fails to detect a fault in its scope has failed at its primary task.
However, it is important to also measure code coverage for a number of reasons. First, small budget
testing aims to detect just-introduced problems, and in a se�ing where simply covering all code
is di�cult, the best way to determine which defects will be detected will o�en be code coverage:
the kinds of bugs detected in this way may not ever make it into commi�ed/released so�ware
and thus not be represented by defects in externally visible code. Given this context, developers
performing small budget testing are plausibly interested in simply covering as much of the code
under test as possible as quickly as possible. For property-based testing, furthermore, developers
o�en have su�ciently strong oracles (e.g., di�erential [48, 79] ones) that mere coverage is more
o�en su�cient for fault detection [102], especially for just-introduced faults, which are o�en easy

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:11

to trigger, we suspect. Previous work on weaknesses of automatically generated tests showed that
failure to cover the faulty code is o�en a critical problem: 36.7% of non-detected faults were simply
never covered by any test [97].

A second reason it is dangerous to rely on only fault detection for evaluation is that defect sets
are unfortunately typically quite small (e.g., Defects4J [64] covers just 6 projects and about 400
bugs), and, more importantly for our purposes, are heavily biased towards bugs that lasted long
enough to appear in bug databases, and usually only contain Java or C programs. As Dwyer et al.
[27] showed, using a small set of defects can produce unreliable evaluations of testing methods,
since so much depends on the exact faults used. Where there are signi�cant di�erences in branch or
statement coverage, correlation with fault detection for (what we use in every case) �xed-size test
suites is known to be strong. Even work questioning the value of coverage [63] tends to con�rm
the relationship for suites of the same �xed size, with Kendall τ usually 0.46 or be�er, o�en 0.70 or
be�er [62]; i.e. higher coverage is highly likely to indicate higher bug/mutant detection [38, 42].
We therefore demonstrate effectiveness using both coverage and limited fault-based evaluations.

BugSwarm [106] does provide a larger number of faults, and includes (unlike other data sets)
Python examples. Unfortunately, when we examined the BugSwarm defects, the subjects and
bug types were seldom easily translatable to a property-driven test harness, unless we were to
undertake to essentially use our knowledge of the bug to carve out a portion of the Python API to
test, and properties to check. �is does not accurately re�ect typical use of property-based testing,
and would inevitably introduce bias. Using general-purpose harnesses for testing the libraries,
developed without bug knowledge (and with developer input in some cases), is more realistic. �e
TSTL harnesses used in this paper were all, �rst and foremost, designed to re�ect typical use of
property-based testing, rather than to detect a speci�c bug, or for use as experimental subjects.
�ese are all realistic test harnesses a developer might produce, in our opinion.

�at is, while (mostly) written by authors of this paper, these harnesses were written A) to focus
on important parts of API, to �nd bugs, not automatically generated with no understanding of the
likely usage of the methods and B) with manually constructed, but simple, oracles, similar in style
and power to those found throughout both the literature of property-based testing and real-world
usage. �e pyfakefs harness has bene�tted from considerably commentary and examination by
the pyfakefs developers, who made contributions to the TSTL code in order to support better
TSTL testing of pyfakefs. Feedback from SymPy developers contributed in a lesser way to tuning
that harness. We also examined a large number of real-world Hypothesis test harnesses to better
understand real-world developer uses of property-based testing in Python. Furthermore, one of the
authors originally used TSTL as a developer/tester only, not a researcher, in the course of pursuing
an MS in Geographic Information Systems, focusing on testing the widely used ArcPy library for
GIS, and either contributed to harnesses or vetted them as similar to her own efforts in a purely
QA/development role.

Following the advice of Arcuri and Briand [9], we do not assume that statistical distributions
involved in random testing are normal, and thus use the Mann-Whitney test for determining
signi�cance of non-paired comparisons (e.g., within-SUT runs), and the Wilcoxon test for deter-
mining signi�cance of paired comparisons (per-SUT overall results, where the matching by SUT
is important). We believe the 100 runs used for all experiments are (more than) suf�cient sample
size to effectively compare the impacts of various test generation methods, for each SUTs. �e
large sample size of runs per SUT, relative to significant but not unbounded variance in results
we observed, allows us to detect, with very high probability, any differences between generation
methods, and their effect size and direction—in short, the expected distributions of coverage and
fault detection results for each SUT/method pair—unless the differences are very small.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:12Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

Table 1. Python SUTs. Size is lines of code as measured using cloc. Stars / Uses reports GitHub repo stars
and the GitHub “Used by” statistic, a rough measure of popularity. GitHub does not always report the “Used
by” statistic.

SUT Size Source Stars / Uses
arrow 2707 h�ps://github.com/crsmithdev/arrow 5900 / 10400
AVL 225 TSTL example [107] N/A
heap 56 Hypothesis example [70] N/A
pyfakefs 2788 h�ps://github.com/jmcgeheeiv/pyfakefs 281 / 398
sortedcontainers 2017 h�p://www.grantjenks.com/docs/sortedcontainers/ 1600 / Not reported
SymPy 227959 h�p://www.sympy.org/en/index.html 6500 / 14600
bidict 569 h�p://pythonhosted.org/bidict/home.html 535 / Not reported
biopython 81386 h�ps://github.com/biopython/biopython.github.io/ 2000 / 3500
C Parser 5033 h�ps://github.com/albertz/PyCParser 1900 / Not reported
python-rsa 1597 h�ps://github.com/sybrenstuvel/python-rsa 219 / Not reported
redis-py 2722 h�ps://github.com/andymccurdy/redis-py 8200 / 62900
simplejson 2811 h�ps://simplejson.readthedocs.io/en/latest/ 1200 / 35400
TensorFlow 193374 h�ps://github.com/tensor�ow/tensor�ow 140000 / 60100
z3 10501 h�ps://github.com/Z3Prover/z3 5000 / 20

Table 2. Fault Information

SUT # Faults Description of Faults or Link to GitHub Issues
arrow 3 h�ps://github.com/crsmithdev/arrow/issues/492 plus two other ValueErrors

for unusual inputs, �xed since discovered
AVL 1 Change of rotation direction produced improperly balanced trees.
heap 1 Implementation bears li�le resemblance to a real heap, yet can pass many simple

tests.
pyfakefs 6 h�ps://github.com/jmcgeheeiv/pyfakefs/issues/256

h�ps://github.com/jmcgeheeiv/pyfakefs/issues/272
h�ps://github.com/jmcgeheeiv/pyfakefs/issues/284
h�ps://github.com/jmcgeheeiv/pyfakefs/issues/299
h�ps://github.com/jmcgeheeiv/pyfakefs/issues/370
h�ps://github.com/jmcgeheeiv/pyfakefs/issues/381

sortedcontainers 2 h�ps://github.com/grantjenks/python-sortedcontainers/issues/55
h�ps://github.com/grantjenks/python-sortedcontainers/issues/61

SymPy 26 h�ps://github.com/sympy/sympy/issues/11151
h�ps://github.com/sympy/sympy/issues/11157
h�ps://github.com/sympy/sympy/issues/11159
23 additonal problems identi�ed by unique Exception structure, not reported due
to being �xed before above, reported, issues were resolved.

We measured code coverage, both in our core experiments and in measures of the overhead of code
coverage, using version 4.5.2 of the widely-used, essentially standard, coverage.py Python module3.
To our knowledge, coverage.py is practically the only Python coverage library used in practice, and
is at least as low-overhead and e�cient as any other Python coverage tool. Version 4.5.2 is not the
most recent coverage.py release, but the changes in the two most recent 4.5 releases only concern
packaging metadata and multiprocessing support in Python 3.8, neither of which a�ects overhead or
is relevant to this paper’s concerns (h�ps://coverage.readthedocs.io/en/coverage-5.0/changes.html).
�e 5.0 release similarly does not appreciably change measured overheads. All versions we used
are based on a fast native C tracing implementation.

3.2.2 Experimental Subjects. We applied the LOC heuristic, pure random testing, and two
established test generation heuristics (a coverage-driven Genetic Algorithm (GA) and swarm
testing) discussed below, to testing a set of Python libraries (Table 1) with test harnesses provided
in the TSTL GitHub repository [50]. Two of our SUTs (AVL and heap) are toy programs with
hard-to-detect faults, used in TSTL or Hypothesis documentation and benchmarking; the remaining

3GitHub reports that over 80000 Python projects use coverage.py.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

https://github.com/crsmithdev/arrow
https://github.com/jmcgeheeiv/pyfakefs
http://www.grantjenks.com/docs/sortedcontainers/
http://www.sympy.org/en/index.html
http://pythonhosted.org/bidict/home.html
https://github.com/biopython/biopython.github.io/
https://github.com/albertz/PyCParser
https://github.com/sybrenstuvel/python-rsa
https://github.com/andymccurdy/redis-py
https://simplejson.readthedocs.io/en/latest/
https://github.com/tensorflow/tensorflow
https://github.com/Z3Prover/z3
https://github.com/crsmithdev/arrow/issues/492
https://github.com/jmcgeheeiv/pyfakefs/issues/256
https://github.com/jmcgeheeiv/pyfakefs/issues/272
https://github.com/jmcgeheeiv/pyfakefs/issues/284
https://github.com/jmcgeheeiv/pyfakefs/issues/299
https://github.com/jmcgeheeiv/pyfakefs/issues/370
https://github.com/jmcgeheeiv/pyfakefs/issues/381
https://github.com/grantjenks/python-sortedcontainers/issues/55
https://github.com/grantjenks/python-sortedcontainers/issues/61
https://github.com/sympy/sympy/issues/11151
https://github.com/sympy/sympy/issues/11157
https://github.com/sympy/sympy/issues/11159
https://coverage.readthedocs.io/en/coverage-5.0/changes.html

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:13

Table 3. Omi�ed Subjects

XML Tests consistently hit exponential case or bug causing loop; TSTL does not sup-
port action timeouts so this makes experiments impossible to perform.

arcpy Each test action requires more than 60 seconds on average to perform; also most
code under test is compiled C++ without coverage instrumentation, and only
available on Windows.

bintrees harness detects bug that consistently causes timeout; also, development stopped
and replaced by sortedcontainers.

danluuexample Toy example, with only one function to call.
datarray inference Coverage saturates in 60 seconds, and bug is only detectable using nondetermin-

ism checks.
dateutil Bug consistently causes timeout.
eval Actual test of SUT is via subprocess execution, so coverage not possible, also only

one test function.
gmpy2 Code under test is almost entirely C code, not Python code.
kwic Toy example from the classic Parnas problem, used in a so�ware engineering

class. Coverage saturates easily in 60s with random testing, and there are no
bugs.

maze Toy example with only one function to call.
microjson Only call to SUT is in a property.
numpy Average test action requires more than 60 seconds to run, and timeouts exceeding

test budget are extremely frequent, along with crashes due to memory consump-
tion.

nutshell Toy example for TSTL Readme, with no actual code to test.
oldAVL �is is simply a less-readable version of the AVL harness included in our SUTs.
perfsort Only calls one SUT function.
pysplay Bug consistently causes timeout.
pystan Only calls one SUT function (essentially a compiler test).
solc Only calls one SUT function (essentially a compiler test).
stringh Code under test is C code, not Python.
tictactoe Toy example, code of interest only in property, and saturates coverage/detection

of “fault” in 60 seconds.
trivial Toy/contrived examples to test corner cases of test reduction. Saturates cover-

age/detection of “fault” in 60 seconds.
turtle Toy example, no “testing” involved but an e�ort to produce interesting random

art using test generation.
water Toy example, no actual function calls at all.

programs are popular Python libraries, with many GitHub stars indicating popularity. We could
have omi�ed the “toy” examples as unrealistic, but included them because, while not of real-world
code, both are extremely similar to property-based harnesses for real-world containers, which are
frequently the target of property-based testing e�orts. Moreover, the relatively small APIs in both
cases made understanding the di�erences between test generation method performance easier (and
thus made it easier to construct hypotheses about causes of method e�ectiveness for more complex
SUTs).

Table 2 provides information on the faults in SUTs for which we investigated fault detection.
Most faults in this table were detected by at least one of our core experimental runs. �e exception is
for SymPy, where the most faults detected by any single run was 2, and there were only 14 detected
faults for our core experiments. We know of 12 additional detectable faults not found by any of the
core experimental runs, as well; the set of 26 noted in the table is for all saved TSTL output for that
version of SymPy, e.g., including our hour long experimental runs. A single recursion-depth error
accounted for the largest fraction of detected faults, about half of all detections. Many faults were
detected only three times out of 1250 experimental runs.

To avoid bias, we a�empted to apply our approach to all of the example test harnesses included
with the TSTL distribution at the time we performed our experiments, omi�ing only those where the
experiments would be meaningless or give our approach an unfair advantage. Reasons for omission
were limited to:

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:14Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

(1) Python is almost completely an interface to underlying C code or an executable (e.g., gmpy2,
eval), and so LOC of Python functions contains no useful information.

(2) �e SUT consistently enters an in�nite loop (which makes it impossible to perform our 60
second budget experiments, since TSTL locks up and does not produce coverage summaries).

(3) �e minimum reasonable budget for testing is much longer than 60 seconds (e.g., for ESRI
ArcPy, simple GIS operations o�en take more time than the entire test budget).

(4) �e harness is clearly a toy, without any real testing functionality (e.g., an implementation
of a puzzle, or a tool for producing random turtle art), relevant coverage targets, or any
(even fake) bugs.

(5) All methods consistently completely saturate coverage within 60 seconds, and detect all
faults.

(6) Either no actions call SUT code (possible when all SUT interactions are via the property),
or only one action calls SUT code (which would usually give an unfair advantage to our
approach, which would automatically give that call 80% of the test budget).

Table 3 explains the reason for omission for every harness in the TSTL examples directory at the
time we performed our experiments for which we did not report results; in some cases several of
the above reasons apply. Obviously, harnesses introduced a�er we performed our experiments
were not included (and most would be rejected for other reasons as well).

TSTL has been used to report real faults (later corrected by the developers) for pyfakefs, SymPy,
and sortedcontainers. �e pyfakefs e�ort is ongoing, with more than 80 detected and corrected
defects to date, and one error discovered not in pyfakefs but in Apple’s OS X implementation of
POSIX rename. Note that LOC for each SUT is usually much greater than coverage below. �is
is in part due to our focus on 60 second testing, in part due to the coverage tool not considering
function/class de�nition code (e.g., def or class lines) as covered, and in part due to a more
complex cause: most of the test harnesses only focus on easily speci�ed, high-criticality interface
functions, and omit functions whose output cannot e�ectively be checked for correctness, that
are very infrequently used in practice, or that are easily completely veri�ed by simple unit tests.
�ese harnesses, for the portion of each SUT’s API tested, usually provide considerable oracle
strength beyond that o�ered by Randoop or EvoSuite style test generation. �e AVL, pyfakefs,
bidict, and sortedcontainers harnesses provide complete di�erential testing with respect to a
reference implementation in the standard Python library or the operating system, and the heap,
SymPy, python-rsa, and simplejson harnesses provide round-trip or other semantic correctness
properties.

A full implementation of the LOC heuristic approach evaluated in this paper has been available
in the release version of TSTL since 2017, using the --generateLOC and --biasLOC options. In
general, to reproduce our results, no special replication package is needed; using the current release
of TSTL plus appropriate versions of tested Python modules is all that is required; experiments were
performed on mac OS X, but should work in any Unix-like environment. �e GitHub repository
h�ps://github.com/agroce/LOCtests contains our raw TSTL output �les used for all analysis in this
paper, and the exact con�guration of TSTL used can be extracted by examining the �rst line of those
�les, plus version information to help with installation of appropriate versions of SUT libraries.
�e scripts directory in this repository contains our analysis scripts, though we warn the user
that these are tuned to a local TSTL install and Python environment, and were not developed to be
re-usable. �e state of the code means that using your own analysis scripts may be more useful;
they do show how to parse TSTL output, however. Note that the swarm dependency computation
recently changed (h�ps://blog.regehr.org/archives/1700), so the --noSwarmForceParent option
must be used to match the older swarm results.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

https://github.com/agroce/LOCtests
https://blog.regehr.org/archives/1700

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:15

3.3 Results Comparing Test Generation Methods Supported by TSTL (RQs 1, 2, and 3)
We ran each test generation method 100 times for 60 seconds on each SUT, and used those runs as
a basis for evaluation. Table 4 gives an overall picture of the di�erence between unguided random
testing and LOC heuristic-guided testing, divided between SUTs with detectable faults and those
without. �e second and third columns show mean changes in coverage. For those SUTs with faults
detectable by the test harness, the faults column shows changes in number of faults detected. �e
�nal column, =branch shows the time required to obtain the mean 60 second branch coverage
achieved using LOC, using pure random testing. Very roughly speaking, 60 seconds of testing with
the LOC heuristic is as e�ective (at least in terms of branch coverage) as this amount of pure random
testing. �is is computed by taking the LOC coverage, then repeatedly running random testing until
it reaches the same coverage, and taking the mean of the runtimes over 30 runs. �is value is more
informative than the simple percent improvement in coverage, since di�erent branches are not
equally hard to cover: for many SUTs 60-80% or more of all branches covered by any test are covered
in the �rst few seconds of every test, but covering all branches covered by any test may take more
than an hour, even with the most e�ective methods. For example, while z3 has one of the smaller
percent improvements in coverage, it takes more than 16 minutes on average for random testing to
cover the missing 11% of branches. For all columns, values in italics indicate di�erences that were
not statistically signi�cant (by Mann-Whitney U test [9]); values in bold indicate a statistically
signi�cant improvement over random testing, and SUTs in bold indicate that all signi�cant changes
for that SUT were improvements. �ere are two versions of sortedcontainers; the latest, and an
older version before TSTL testing, with two very hard-to-detect faults (�rst detected by hours of
random testing).

Table 4. Gain or loss in coverage/faults detected vs. random testing

SUT branch stmt faults =branch
with detectable faults

arrow -6.47% -5.20% +75.9% 9.5
AVL +2.95% +3.30% +37.5% 98.2
heap 0.00% 0.00% +190.0% 60.0
pyfakefs +0.09% +0.13% +403.7% 95.2
sortedcontainers +33.03% +33.34% +INF*% 186.6
SymPy +25.28% +24.87% -15.4% 216.5
* using older version of sortedcontainers with two faults;
random testing never detected these faults; hence % gain INF;
LOC produced 0.1 mean faults / 60s

without detectable faults
bidict -6.18% -7.21% N/A 8.8
biopython -13.52% -13.66% N/A 9.9
C Parser +41.17% +40.35% N/A 1108.9
python-rsa +0.40% +0.41% N/A 66.1
redis-py +16.95% +15.52% N/A 237.0
simplejson -15.45% -13.81% N/A 19.4
sortedcontainers +35.43% +35.27% N/A 268.7
TensorFlow +7.71% +7.26% N/A 121.5
z3 +11.20% +8.48% N/A 979.9

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:16Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

random LOC swarm LOC
+swarm

GA LOC
+GA

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

F
a
u
lt

s
d
e
te

ct
e
d

(a) arrow (3 faults)

random LOC swarm LOC
+swarm

GA LOC
+GA

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

F
a
u
lt

s
d
e
te

ct
e
d

(b) AVL (1 fault)

random LOC swarm LOC
+swarm

GA LOC
+GA

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

F
a
u
lt

s
d
e
te

ct
e
d

(c) heap (1 fault)

random LOC swarm LOC
+swarm

GA LOC
+GA

0

1

2

3

4

5

6

F
a
u
lt

s
d
e
te

ct
e
d

(d) pyfakefs (6 faults)

random LOC swarm LOC
+swarm

GA LOC
+GA

0.0

0.5

1.0

1.5

2.0

2.5

F
a
u
lt

s
d
e
te

ct
e
d

(e) sortedcontainers (2 faults)

random LOC swarm LOC
+swarm

GA LOC
+GA

0.0

0.5

1.0

1.5

2.0

2.5

F
a
u
lt

s
d
e
te

ct
e
d

(f) sympy (14 faults)

Fig. 3. Fault detection results. Caption indicates total # of distinct faults detected over all runs.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:17

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(a) arrow

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(b) AVL

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(c) heap

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(d) pyfakefs

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(e) sortedcontainers (old)

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(f) sympy

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(g) bidict

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(h) biopython

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(i) C Parser

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(j) python-rsa

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(k) redis-py

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(l) simplejson

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(m) sortedcontainers

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(n) TensorFlow

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(o) z3

random LOC swarm LOC
+swarm

GA LOC
+GA

0%

25%

50%

75%

100%

B
ra

n
ch

e
s

co
v
e
re

d

(p) All SUTs combined

Fig. 4. Branch coverage results for individual Python SUTs, plus summary.

For 11 of the 15 SUTs and 9 of the 13 non-toy SUTs, all statistically signi�cant di�erences from
random testing were improvements, and o�en very large improvements (RQ1). In every case
where there was a signi�cant change in fault detection rate, there was an improvement, and the
improvements were all larger than the single (not signi�cant) negative change. Note that because
of the time taken to process failing tests, when LOC improves fault detection, it pays a price in
coverage proportional to the gain.

We also tried using the purely static method for estimating LOC discussed above. While this
still o�en improved on random testing, it was statistically signi�cantly much worse (by over 1000
branches/statements, and a large corresponding decrease in fault detection) than random testing
for pyfakefs, and statistically signi�cantly worse (but in a less dramatic fashion) than the dynamic
sampling approach for both kinds of coverage for all other SUTs except redis-py. For redis-py,

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:18Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

the static method was actually be�er than the dynamic approach, perhaps because there is almost
no dynamic element to the types in the harness and the interesting code is primarily in top-level
wrappers; inspection suggests that it also may simply be that an inaccurate estimate here has a
bene�cial e�ect, due to the dependencies between methods. Such a result for static LOC is, we see,
unusual, at least among our SUTs, and the cost of dynamic sampling seems acceptable, given the
bene�ts for all but one SUT.

Figures 3 and 4 show more detailed results for applying the LOC heuristic, with each graphic
structured to show pairs of methods, with the LOC-biased version in the second (right) position of
each pair, to visualize results for RQ1-RQ34. We omit statement coverage results, as the graphs are
essentially not distinguishable from branch coverage results5. �e le�most pair (random and LOC)
corresponds to the data in Table 4. Coverage results in Figure 4 are normalized to % of maximum
coverage obtained in any run, while faults are shown as actual number of faults detected. For fault
detection, we added a dashed green line showing mean, since the small range of values (0-3) for
most subjects produces similar median values even when results are quite di�erent. In addition
to pure random testing, these graphs show results for combining LOC with two other heuristics
provided by TSTL. Because the LOC heuristic simply biases the actions chosen by the core random
selection mechanism, it can be combined with many other testing methods, so long as they do not
require se�ing action (class) probabilities. �e middle and rightmost comparisons are for, without
and with LOC bias:

• Swarm [52], before each test, randomly disables a set of action classes (with 50% probability)
for each test. �e TSTL swarm testing implementation also uses dependencies between
action classes to improve the performance of swarm testing over the previously published
method.
• GA is a typical coverage-driven genetic algorithm [1, 36, 80], mixing 20% random gen-

eration with mutation, crossover, and extension of high-�tness (as measured by code
coverage, without branch distances) tests. It allows us to directly compare with search-
based testing/mutational fuzzing driven by dynamic coverage measures. �e TSTL GA
implementation is tuned to small-budget testing: 20% of the time, or if there are no high-
�tness tests in the population, it generates a new random test instead of choosing a test
from the pool, and can extend a test rather than mutating it. �is mixes initial population
selection with population re�nement and allows the system to escape local minima.

All three methods (LOC, swarm, and GA) are useful; it is never best to stick to pure random
testing. Swarm o�en made testing worse6, but when it was e�ective, it was highly e�ective, for
three of the most di�cult to test SUTs, the C parser, redis-py, and z3 (swarm’s origins in compiler
testing show in that it helps with constructing structured, program-like, inputs). However, in all
three cases, also using LOC makes swarm perform even be�er, so that swarm is never “the best”
method.

For fault detection, all methods detected all faults in at least one run for arrow, AVL, heap, and
pyfakefs. For pyfakefs, note that while every method found every fault at least once, only
LOC-based methods were reliably able to detect most faults, and only LOC alone consistently found
most of the faults, most of the time (see Figure 3d). Using LOC alone is statistically signi�cantly
be�er than all other methods (all di�erences with LOC and with random are signi�cant, with
p < 1.0 × 10−5), detecting a mean of 4.07 faults per run. �e next best method, the GA with LOC,

4�e odd graph for Figure 4c means all runs always hit 100% branch coverage.
5�e graph for heap is di�cult to read because all methods always obtain 100% coverage.
6�is is because swarm testing increases test diversity, which may make individual tests less e�ective, and not pay o� in
only 60 seconds.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:19

Table 5. Best Methods

random LOC GA GA+LOC swarm swarm+LOC
branch coverage 0 1 5 7 0 2
statement coverage 0 2 4 7 0 2
fault detection 0 2 1 3 0 0

only detected a mean of 3.6 faults/run. No method not using LOC detected more than 2.3 of the
faults per run, on average. Random testing and swarm without LOC detected less than one fault,
on average.

Using LOC also made detection rates and mean number of faults found higher for arrow, AVL,
and heap, but in a less dramatic fashion (see Figure 3). For all subjects with detectable faults, except
SymPy, the method detecting the most faults was either the LOC heuristic or a combination of the
LOC heuristic with the GA, and the di�erence in fault detection rates for SymPy was not statistically
signi�cant between methods (RQ2-3).

For sortedcontainers and sympy total fault detection results were more interesting. Pure
random testing never discovered either fault in sortedcontainers. LOC alone discovered one
fault only, 30 times out of all runs; GA discovered only the other fault, and only 3 times; swarm
testing found both faults, but detected a fault at all about half as o�en as LOC (6 detections for the
fault the GA found, and 12 for the fault LOC found). Combining methods, swarm with the LOC
found the fault LOC detected 66 times, and using the GA with LOC also found that same fault 66
times, and additionally detected the fault detected by GA 3 times. �e story for SymPy was even
more complex. Pure random testing found the most diverse fault set, but still only 7 of the 14 total
detected faults. �e LOC heuristic only found 3 di�erent faults, but two of these were ones not
found using pure random testing; one was not detected by any other approach. �e GA found 4
di�erent faults, two of which were not found using pure random testing, and one of which only it
detected. Swarm testing found 4 di�erent faults, again including one not found by random testing,
but none unique among methods. Combining the GA with LOC made it possible to detect 5 faults,
none of which were unique to that approach, and combining swarm with LOC found 3 di�erent
faults, of which one was unique. �ese results suggest that for �nding faults, diversity of approach
may be critical, a generalization of the reasoning behind swarm testing and swarm veri�cation
[61], but these overall detection results are not statistically validated in any sense: lumping all runs
together essentially produces one large run.

Absolute di�erences in coverage varied for RQ1, but were o�en large. �e mean mean gain
in branches covered, for LOC vs. pure random testing, was 219.1 branches, with a median mean
gain of 146.1 branches; mean loss when LOC was ine�ective was only 27.9 branches (mean) or 29
branches (median). For 8 of 11 branch coverage improvements the gain was more than 80 branches.

Perhaps the simplest way to compare methods for all of RQ1-RQ3 is to ask “For how many SUTs
was a particular method the best approach for coverage?” and “For how many SUTs was a particular
method the best approach for fault detection?” ignoring statistical signi�cance. Table 5 shows the
results. �is analysis also re�ects probabilites that, based on trial runs, a user would select each
method for use in testing, an important point we consider further in Section 4.3. �e combination
of a GA with the LOC heuristic is clearly the best method, but we should always recall that this
imposes the costly overhead of collecting coverage; below we a�empt to estimate how the methods
would compare if LOC were given the advantage of not having to compute coverage. Moreover,
when LOC improved on random testing, it almost always improved GA and swarm to use LOC, as
well (RQ3). �e exceptions were that for branch coverage, adding LOC did not improve on GA

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:20Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

for the C parser, did not improve on swarm for the buggy version of sortedcontainers, and did
not improve either GA or swarm for python-rsa. For python-rsa, however, all values were so
similar that this disagreement was not statistically signi�cant. For fault detection, improvement
over random was always accompanied by improvement when added to GA and swarm. It is clear
that the LOC heuristic is a low-cost way to improve the performance of a GA in most cases, and
that, ignoring the cost of code coverage, combining methods is o�en very useful.

We summarize the answers to RQ1-RQ3 in terms of individual SUTs more succinctly in Section
4.1 below, as a prelude to discussing the overall meaning and possible causes for our results.

3.4 Analysis Combining All Subjects (RQ1-RQ3)
Using normalized coverage data allows analysis of all subjects together, both those where LOC
helped and those where it was harmful (Figure 4p, which includes subjects with and without faults).
Considering the impact of LOC on each SUT, and how o�en it was helpful is generally a more
important way to understand the results, but the combined analysis provides some additional
insights into the e�ect sizes for the various heuristics, and makes the comparison with pure random
testing (RQ1) even clearer. �e means for LOC were 83.0% of maximum branch coverage and
83.2% of maximum statement coverage. �e means for pure random testing were 79.3% branch
coverage and 79.6% statement coverage (RQ1). All di�erences were signi�cant by Wilcoxon test at
p < 1.0 × 10−18. LOC was also be�er for branch and statement coverage than GA (80.2% branch
coverage, 80.4% statement coverage, p < 1.0 × 10−23) (RQ2). �is is particularly notable: despite
also paying the (unnecessary) overhead of coverage, using random testing with the LOC bias
outperformed a GA using code coverage results to drive testing. Combining the GA and LOC (RQ3)
produced mean branch coverage of 84.2% and mean statement coverage of 84.5%. It is not clear
that combining LOC and GA would even improve on LOC, if LOC did not pay the (high) overhead
of code coverage; that is, the advantage of adding the GA may be overwhelmed by coverage costs
for many SUTs. Swarm without LOC had the best coverage means (85.2% for both kinds), despite
never being the method for best branch or statement coverage for any SUT (RQ2). Swarm with
LOC performed slightly be�er than LOC alone in terms of coverage (83.2% branch coverage, 83.4%
statement coverage) (RQ3). Again, we emphasize that for the very subjects where swarm testing
was neccessary for producing good results, swarm with LOC was always be�er than swarm alone
(RQ3). Swarm’s higher mean is entirely due to the very poor performance of LOC (or swarm with
LOC) on a few subjects, and for these subjects swarm was also always less e�ective than GA (RQ2).

We similarly normalized fault detection by counting failed tests (hence probability of detecting
any faults at all), and using the maximum number of failed tests as 100% (RQ1-RQ3). Swarm testing
had the worst fault detection results by a large margin, with a mean of only 5.8% of maximum
failures, faring badly compared to LOC (20.1%), GA (11.1%), LOC+GA (24.8%) and even pure random
testing (6.3%). Presumably, this is partly because our faulty SUTs and “compiler-like” SUTs did not
overlap. Swarm with LOC improved this, but only to 10.6%. LOC and LOC+GA, with 11.1% and
21.6%, respectively, were the only methods with median values be�er than 0.0%, i.e., with median
detection of any faults (RQ1-RQ3).

�ere was not a compelling correlation between SUT size and either branch coverage (R2 = 0.01)
or fault detection (R2 = 0.22) e�ectiveness for LOC compared to random testing. �e directions of
correlations are also opposite (positive for coverage, negative for faults). Using maximum statement
coverage to measure “e�ective size of tested surface” instead of actual SUT LOC, produced similar
results (R2 = 0.11, R2 = 0.17).

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:21

3.5 The Cost of Coverage
A key assumption of this paper (and factor in choosing Python as the target language) is that,
despite Python’s popularity, and years of work on testing tools for Python, such as unit testing
libraries, the overhead of collecting coverage information in Python is large.

Table 6 shows a simple measure of the cost of coverage: for each SUT we ran 60 seconds of testing
with and without coverage instrumentation, provided by the state-of-the-art coverage.py tool, for
the same random seeds, 10 times, and recorded the total number of test actions taken in each case.
�e table shows the average ratio between total actions without coverage and total actions with
coverage. �e cost ranges from negligible (arrow) to exorbitant (biopython). Improving Python
coverage costs is non-trivial, as discussions of the issues (and the fact that these overheads persist
despite years of development on coverage.py) suggest [71, 72].

�e second column of results in Table 6 is for execution using the Python JIT (Just-In-Time
compiler) pypy. Overhead for coverage is similar, except for biopython, where the cost is still
signi�cant at well over 2x more test operations when running without coverage instrumentation; it
is merely reasonable compared to the exorbitant 50x fewer test operations with coverage, when not
using the JIT. �e mean is considerably reduced, due to biopython, but median cost is similar. We
a�empted to investigate why the overhead for biopython is so extreme when running without a
JIT, but were unable to determine what the source of the problem is, based on pro�ler information.
Dropping it as an outlier, considering only median overheads, it seems safe to say that with or
without a JIT, in Python, measuring code coverage will usually e�ectively reduce the test budget
considerably. We also tried re-running our experiments with the just released (Dec 14, 2019)
stable non-alpha coverage.py 5.0, though none of the changes seemed likely to be relevant. As
expected, results were within 10% of those for version 4.5.2, with no consistent improvement (or
degradation). It is di�cult to say what the cost of coverage would be, using the most sophisticated
methods available in the literature; some are not appropriate, in that coverage-driven methods need
to check every test executed for at least lower-frequency targets, and are likely to tolerate even
infrequent “misses” poorly. Furthermore, given the popularity and development e�ort involved in
coverage.py, including e�ort spent reducing overhead, we do not expect to see any less costly
approaches available in Python for the forseeable future. �e dynamic nature of the language, even
under a JIT (as shown above) may preclude reaching the low overheads sometimes seen for C and
Java code.

It is important to note that GA is the only method in our experiments that actually requires
measuring code coverage during testing. However, in order to report coverage results as an
evaluation, all methods were run with code coverage collection turned on. Again, we emphasize
that in practice, a user interested in actual testing would run without code coverage, when not
using GA, obtaining higher test throughput. Determining the exact impact of coverage overhead is
di�cult; we can record tests generated during execution without coverage instrumentation, and run
the tests later to determine what coverage they would have obtained; however, the cost of recording
all tests is itself very high, since some SUTs can generate thousands of tests in a minute, and storing
thoses tests is expensive. In this paper, we simply compare results as if all testing methods were
required to collect coverage data, but this over-reports the e�ectiveness of GA compared to other
methods, including pure random testing. While we cannot e�ectively compare the LOC heuristic
to GA for code coverage, without measuring code coverage, we can examine fault detection. LOC
already detected signi�cantly more faults than any other method for some SUTs (AVL, heap, and
pyfakefs), and allowing for more test actions by disabling coverage only increased the gap. When
we re-ran without code coverage, LOC also signi�cantly (p = 0.04) outperformed all GA-based
methods for SymPy, detecting 0.24 mean faults per 60 second run, compared to 0.1 for the LOC+GA

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:22Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

combination, or 0.15 for the GA alone (the best performing method when coverage was collected).
For arrow and sortedcontainers, on the other hand, the cost of coverage was too low to enable
LOC alone to outperform the previously best-performing LOC+GA combination. �e primary
determination for whether it is worth collecting code coverage in our experimental results seems
to be the cost of coverage, rather than the effectiveness of GA. �at is, when coverage is very cheap
to collect, it is worth paying that cost to add GA to LOC, and when coverage is expensive, at least
in our results, it seems that “paying for GA” may not be a good idea, even if GA is, ignoring that
cost, a useful addition to LOC.

3.6 Comparison with python-afl

American Fuzzy Lop (AFL), commonly known as afl-fuzz [113], is an extremely popular coverage-
driven fuzzer (essentially using a GA over path coverage). python-afl (h�ps://github.com/jwilk/
python-a�) makes it possible to fuzz Python programs using AFL. Because TSTL supports generating
tests using python-afl in place of TSTL itself, we were able to perform an additional comparison
with the AFL algorithm (and python-afl’s instrumentation, designed to be low-overhead, with
a C implementation) for test generation. TSTL in this se�ing is only used for test execution and
property checking, not for test generation. We know from past experience that python-afl can
�nd faults that TSTL cannot (e.g., h�ps://github.com/jmcgeheeiv/pyfakefs/issues/378).

Because AFL requires a corpus of initial inputs on which to base fuzzing (it is a mutational fuzzer),
we gave AFL 60 seconds to fuzz a�er using pure TSTL random testing for 20 seconds to produce an
initial corpus. �is in theory gives python-afl a substantial advantage over our TSTL-only tests.

Pure random testing with TSTL essentially always dramatically outperformed python-afl in
terms of branch coverage, even though python-afl had the advantage of incorporating results
from 20 seconds of TSTL random generation. For example, mean branch coverage for the simple
AVL example decreased by 11%, while it decreased by almost 15% for sortedcontainers, and
nearly 80% for sympy. �e path coverage-based GA of AFL did produce improvements over pure
random testing for some of the toy examples, e.g. improving fault detection rates by about 1% over
random testing for the AVL example, and from 10% to 29% for hypothesis heaps. However, this
was still much worse than the LOC heuristic fault detection rates of 99% and 71%, respectively.
Unsurprisingly, given the huge loss in code coverage, python-afl was unable to �nd the faults in
sortedcontainers and sympy.

Table 6. Gain in test operations when executing without coverage instrumentation

SUT Actions without coverage
Actions with coverage

Actions without coverage
Actions with coverage

(tests executed with pypy)
arrow 1.00 1.01
AVL 6.41 4.66
heap 4.98 5.07
pyfakefs 2.03 2.11
sortedcontainers 1.09 1.17
SymPy 2.30 1.88
bidict 1.48 1.24
biopython 50.07 2.16
C Parser 1.04 1.02
python-rsa 1.14 1.22
redis-py 1.02 1.06
simplejson 1.47 1.09
TensorFlow 9.54 9.62
z3 2.14 2.11
Mean 6.12 2.53
Median 2.03 1.56

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

https://github.com/jwilk/python-afl
https://github.com/jwilk/python-afl
https://github.com/jmcgeheeiv/pyfakefs/issues/378

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:23

branch
default

branch
LOC

statement
default

statement
LOC

0%

25%

50%

75%

100%

C
o
v
e
ra

g
e
 (

n
o
rm

a
liz

e
d
)

Fig. 5. Randoop coverage, default and with LOC heuristic

Rather than elaborate on these results, we simply note that it is unfair to compare against
python-afl under our experimental se�ings and for the use case considered in this paper. Modern
mutation-based fuzzers are primarily intended to be used in runs of at least 24 hours [66]. �ey are,
despite very sophisticated algorithms, extensive tuning, and high-performance instrumentation, not
useful for quick turnaround property-based testing. Random testing is, at least in the Python se�ing,
for this problem, a be�er baseline. As would be expected, given that LOC generally performs much
be�er than random, it also outperforms python-afl, including in some cases where it performs
worse than pure random generation.

3.7 Comparison with Feedback-Directed Random Testing
We would also like to compare to the feedback-directed random testing algorithm of Pacheco et al.
[87]. Unfortunately, perhaps due to reset or object equality overheads, it and related methods [112]
are known to perform poorly in Python [65]. We therefore performed a preliminary experiment
using the Randoop Java implementation.

�e implementation was simple: we measured LOC (unlike with Python, only for non-comment,
non-blank lines) for each method in the Class Under Test (CUT) using the Understand [95] tool, and
then used Randoop’s ability to take as input a list of methods to test to bias probabilities accordingly.
�at is, in place of simply listing all methods of the CUT, we duplicated each method in the list a
number of times equal to its LOC, thus biasing the probability in favor of larger methods in exactly
the same way as with the Python testing. Unlike with Python, there was no dynamic sampling,
consideration of additional methods called by a top-level method, or need to specify probabilities
for “actions” not calling CUT code. Simply measuring top-level method LOC is reasonable in the
Randoop context, since Randoop is not performing property-based testing with complex actions,
but testing at the method level.

For our experiments, we used a set of 1177 Java classes taken from 27 projects hosted on GitHub
and used in previous work on measuring testedness [3]7. We randomly selected projects until we
had ≥ 1000 classes, then applied Randoop to all of each project’s classes, �rst using the standard
Randoop se�ings, and then again with no changes except use of LOC to bias method choice. Note
7�us projects known to compile, pass all tests, and be analyzable by Understand.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:24Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

that here measurement of LOC is a purely static, nearly zero cost, activity, and there is no coverage
measurement during test generation for any approach. Coverage was measured by instrumenting
and executing generated unit tests.

�e results are, at a high level, similar to those for Python: the LOC heuristic is sometimes
harmful, but more o�en produces an improvement in test e�ectiveness. Using the LOC heuristic
increased mean branch coverage in unit tests for these classes produced by Randoop from 1640.7
branches to 1,924.1 branches (a 17.3% improvement), and mean statement coverage from 16010.8
statements to 18241.4 statements (a 13.9% improvement). �e changes in median coverage were
from 72.0 to 479.0 branches and from 234.0 to 6963.0 statements. �ese results were signi�cant
by Wilcoxon test [9], with p < 1.5 × 10−6. Figure 5 shows coverage, over all classes, normalized.
Normalization means that we consider the maximum coverage for either the default Randoop or
LOC heuristic suite to be “100% coverage.” �is allows us to show results for very di�erent class
sizes using a consistent scale. �e graph makes it clear that, while there were many classes where
LOC was not useful, overall the e�ect was striking, with coverage much more tightly clustered
close to the maximum observed. Median coverage (both kinds) for LOC was 100%; default coverage
fell to 98.1% (branch) and 99.1% (statement). Mean branch coverage improved from 65.7% to 78.1%
using the LOC heuristic, and mean statement coverage from 67.5% to 81.3%. Normalized results are
signi�cant with p < 1.5 × 10−11.

At the project level, coverage change was signi�cant for only six projects (in part because most
projects do not have very many classes). For �ve of these projects, branch (+4.9%, +10.2%, +12.5%,
+33.0%, +112.6%) and statement coverage (+10.3%, +11.6%, +10.1%, +33.8%, +87.6%) both improved
signi�cantly, and absolute gains were larger than a mean of 1,000 branches/statements (in one case
more than 10K statements) for all but one project. �e other project had a signi�cant decrease of
23.6% in branch coverage only, about 1,000 branches. �e largest gain from using LOC at project
level was 200% improvement in mean branch and statement coverage. More than 47 individual
classes (across 11 di�erent projects) had gains of 2000% or more, however.

3.8 Using Outdated LOC Estimates
In order to estimate the impact of the quality of the LOC estimates, where a large impact would
force programmers to frequently re-analyze their code, we ran the exact same experiment as for
RQ1-RQ3, except using probabilities sampled from older versions of the system, for all of the
SUTs where (1) the LOC heuristic was more e�ective than random testing and (2) there existed
signi�cantly older versions of the code compatible with the test harness. In each case, we used as
old a version as was compatible with the API of the latest version of the system with respect to the
test harness.

For SymPy we were able to revert all the way from the 1.0 release (2016-3-8) to the 0.7.6 release
(2014-11-20); di�erence of 3559 commits with total di� size, measured in lines, of 214125). For
python-rsa we based probabilities on version 3.1.1 (2012-06-18; 131 commits/di� size 6338), nearly
4 years older than the current version 3.4.2 (2016-03-29). With redis-py we reverted to version
2.10.0 (2014-06-01; 90 commits/di� size 1380) in place of the current version, 2.10.5 (2015-11-2).
Finally, for sortedcontainers, we only reverted to version 1.5.2 (2016-05-28; 21 commits/di� size
1090) in place of version 1.5.7 (2016-12-22); earlier versions removed a few interesting functions to
test, and we wanted to see if a somewhat closer-to-latest version changed results in an obvious
way. In all cases, the results were either very similar and statistically indistinguishable (p > 0.05),
or, for SymPy, superior to, results using recent, more accurate, counts.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:25

0 10 20 30 40 50 60
Minutes

0
100
200
300
400
500
600
700
800

B
ra

n
ch

e
s

co
v
e
re

d

random
LOC

(a) C Parser

0 10 20 30 40 50 60
Minutes

400
450
500
550
600
650
700
750
800

B
ra

n
ch

e
s

co
v
e
re

d

random
LOC

(b) redis-py

0 10 20 30 40 50 60
Minutes

300

400

500

600

700

800

900

B
ra

n
ch

e
s

co
v
e
re

d

random
LOC

(c) sortedcontainers

0 10 20 30 40 50 60
Minutes

2600
2700
2800
2900
3000
3100
3200
3300

B
ra

n
ch

e
s

co
v
e
re

d

random
LOC

(d) TensorFlow

0 10 20 30 40 50 60
Minutes

1850
1900
1950
2000
2050
2100
2150
2200
2250

B
ra

n
ch

e
s

co
v
e
re

d

random
LOC

(e) z3

Fig. 6. 1 hour testing branch coverage results.

3.9 Using LOC with Larger Test Budgets
In order to check whether the LOC heuristic remains viable for longer test budgets, we also ran
1 hour of testing on the SUTs where LOC was e�ective for small budgets, coverage is not close

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:26Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

to 100% at 60 seconds (and does not saturate reliably within two minutes, at least), and there are
no faults. Our expectation was that while LOC is generally useful for improving coverage of both
code and state-space, its tendency to focus on high-heuristic-value methods might eventually cause
those portions of the code to become saturated, and some low-LOC methods or functions (especially
ones that have few LOC but can, under unusual circumstances, call high-LOC methods not included
in the dynamic estimate) to be under-covered. In all cases LOC continued to improve on pure
random testing for much larger test budgets. Figures 6a-6e show the results of 15 runs for both
LOC and pure random testing, with 95% con�dence intervals8. In most cases, even a�er an hour,
LOC was be�er than pure random testing, o�en by a large, signi�cant, margin. With TensorFlow
(Figure 6d) and z3 (Figure 6e), there was saturation, in that coverage reliably reached the maximum
obtained within a few minutes (10 for TensorFlow and 2 for z3); however, random testing required
more than 30 minutes to reliably hit the same set of branches. Results for statement coverage were
(except for absolute numbers) essentially identical to those for branch coverage. For SymPy, not
shown in the graphs, most 1 hour runs encountered an in�nite loop fault, which may produce
skewed results over completed runs; however, LOC covered 16,569 branches vs. random testing’s
11,038 branches, for the one successful run for each we eventually collected.

We con�rmed that a�er 20 minutes (and usually a�er less than 60 seconds), all action classes had
been chosen many times, so the di�erences here are not plausibly a�ributable to the low-hanging-
fruit nature of larger functions. Instead, these gains must be due to hard-to-cover branches being
more common in longer functions and the greater impact of longer functions on system state.

4 SUMMARY AND DISCUSSION
4.1 Core Research�estions
For our core research questions (RQ1-3), we generally found that the LOC heuristic was e�ective.
RQ1 could be clearly answered by saying that, in general, the LOC heuristic performs be�er than
random testing without use of the heuristic to bias probabilities. For �ve of the six SUTs with faults,
using the LOC heuristic signi�cantly improved fault detection over pure random testing. �e LOC
heuristic had a negative impact on fault detection for the remaining SUT, but the change was not
(unlike the improvements) statistically signi�cant. �e e�ect sizes in improvements were large;
ignoring the one case where only using LOC allowed detection of any faults, the mean improvement
was 176.8%. Using the LOC heuristic signi�cantly improved branch coverage over pure random
testing for 8 of the 15 SUTs, and signi�cantly decreased it for 4 of the SUTs. �e mean signi�cant
improvement e�ect size (+21.7%) was more than twice than the mean signi�cant decrease (-10.4%).
Using the LOC heuristic also signi�cantly improved statement coverage for 10 of the 15 SUTs, and
signi�cantly decreased it for 4 of the SUTs. Mean signi�cant improvement was 16.9%, compared
to mean decrease of 10.0%. Our hypothesis was that LOC would outperform random testing by
either a code coverage or fault localization meeasurefor 60% of SUTs; LOC signi�cantly improved
on random testing by some measure for 80% of SUTs.

�e results for comparing to more sophisticated strategies (RQ2) were also good. LOC was
signi�cantly be�er for fault detection than the coverage-driven mutational GA for four SUTs
and worse for only one SUT, with mean e�ect sizes of +375.6% and -90%, respectively. LOC was
signi�cantly be�er than GA for branch coverage for 8 of the SUTs and signi�cantly worse for 6
of the SUTs, with mean e�ect sizes of +17.4% and -11.0%, respectively. For statement coverage,
LOC was signi�cantly be�er for 9 SUTs and worse for 5 SUTs, with mean signi�cant e�ect sizes of
+15.1% and -12.9%, respectively. LOC was signi�cantly be�er than swarm for fault detection for
8In order to make the saturation points more visible, we cut o� the bo�om of the very �rst con�dence interval for
TensorFlow: pure random can sometimes cover as few as 2200 branches.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:27

three SUTs and worse for no SUTs, with mean e�ect size of +134.9%. LOC was signi�cantly be�er
than swarm for branch coverage for 7 of the SUTs and signi�cantly worse for 6 of the SUTs, with
mean e�ect sizes of +6.4% and -34.3%, respectively. For statement coverage, LOC was signi�cantly
be�er for 7 SUTs and worse for 6 SUTs, with mean signi�cant e�ect sizes of +6.7% and -34.4%,
respectively.

For GA, the comparison is clearly favorable for the LOC heuristic; it was be�er by some measure
for more than 80% of SUTs. For swarm testing, LOC was be�er more o�en for all measures
(improving on some measure for 66% of SUTs), and swarm was not useful for �nding the bugs
in our faulty SUTs, but, as noted above, when swarm is e�ective for coverage, it can be highly
e�ective, with a greater positive impact than LOC had.

As to why LOC performed be�er or worse than GA or swarm, the explanation can be divided
into two parts. For the SUTs where LOC is actually harmful, that is, worse than pure random
testing, it unsurprisingly is also worse than more e�ective testing methods than random testing.
We discuss possible causes for LOC performing worse than random testing below. �is explains
most of the cases where LOC performs worse than GA and swarm, simply: it performs worse when
it is generally a bad idea to bias based on LOC, even compared to pure random testing. �at is, the
best way to predict if LOC will be more or less useful than the other two methods is to see if it is
helpful compared to random testing. When LOC is worse than than random, it is likely to lose to
methods that tend to do better than random. �is point is not quite as tautological as it might seem:
the other two cases for worse branch coverage are explained by GA or swarm providing a large
bene�t LOC cannot match, although LOC is useful. Swarm testing is, as noted, very powerful for
compiler-like SUTs, and a search-based mutational approach is sometimes the only way to hit a
hard-to-reach part of an SUT’s code, unsurprisingly. �is is why these methods are established;
they provide substantial, hard-to-duplicate bene�ts in some cases. LOC could have performed
worse than GA and swarm in all cases, even if it was almost always a useful method, because they
are even more powerful methods in general. �is was not what we observed; instead, when LOC
was helpful, it was often more helpful than the other methods, but LOC also has cases where it is
not helpful, even compared to a “bad” method such as pure random testing.

Finally, combining methods (RQ3) was o�en useful. �e GA using the LOC heuristic was the
most e�ective method overall, for both branch coverage and fault detection, and swarm with LOC
was the best method for branch coverage twice, while swarm alone was never the best method
for any SUT. In particular, combining the GA and the LOC heuristic was signi�cantly be�er than
LOC alone for 2 SUTs and worse for one for fault detection, and be�er than LOC alone for 6 SUTs
and worse for 1 for both branch and statement coverage. It was signi�cantly be�er than the GA
alone for 3 SUTs and worse for 2 SUTs for fault detection, and signi�cantly be�er for 11 SUTs
and worse for 3 SUTs for both branch and statement coverage. Combining with swarm testing
was less e�ective; it was signi�cantly be�er than the LOC heuristic alone for 2 SUTs and worse
for 3 for fault detection, and signi�cantly be�er for 3 SUTs and worse for 10 for both branch and
statement coverage. Similarly, it was signi�cantly be�er than swarm alone for 1 SUT and worse
for 3 SUTs for fault detection, signi�cantly be�er for 3 SUTs and worse for 7 SUTs for branch
coverage, and signi�cantly be�er for only 2 SUTs and worse for 8 SUTs for statement coverage.
�us, while swarm and LOC certainly can cooperate (recall that LOC improved swarm performance
for the three SUTS that were most improved by swarm, the C parser, redis-py, and z3), they o�en
do seem to work poorly together. We speculate that in some cases, LOC, by focusing testing on
high-LOC functions, frustrates the increased test diversity provided by swarm testing; that is, if a
con�guration includes one high-LOC function, that function may consistently get the lion’s share
of testing, reducing the impact of swarm (tests look more alike, despite di�erent con�gurations).

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:28Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

Swarm on the other hand frustrates LOC’s goal, by o�en removing all high-LOC functions from
the set of available actions. However, given that LOC improved swarm performance for just those
SUTs where swarm was most useful, this negative e�ect may only ma�er when swarm testing
itself is not highly e�ective.

4.2 Supplemental and Exploratory Results
While these results are more exploratory than for our primary questions, we also can draw some
additional conclusions. First, we believe that using the current-state-of-the-art tool (coverage.py)
even in its latest version, and with a JIT, there is a substantial overhead for computing dynamic
coverage in Python. Not instrumenting for coverage allows a testing tool to perform more than
half again as much testing (that is, to execute more test actions, by a factor of 1.5), in the median
case, even using a JIT. �is is not a small advantage. Second, python-afl shows that using an
o�-the-shelf fuzzer, even a sophisticated one, does not compete with even a pure random tester
for this type of short-budget property-based testing, at least without substantial additional e�ort.
�e LOC heuristic also seems to be able to improve code coverage for Java testing as well, when
used to bias the Randoop tool’s generation method. Outdated LOC estimates seem to have li�le
(negative or positive) impact on e�ectiveness of results, even across fairly large code changes, so
long as the tested API itself is not altered. Finally, for some of our SUTs, the utility of the LOC
heuristic extends to much larger testing budgets.

4.3 Discussion
Is the LOC heuristic likely to be universally e�ective for improving testing in se�ings with expensive
code coverage instrumentation? No; it yields worse results for some of our Python SUTs. For large
budget testing, this would be a real problem. In practice few, if any, test generation heuristics
are close to universally e�ective, and the chance that a given, usually useful, heuristic may prove
harmful, which cannot be easily predicted or detected (since we may only have time to run one
technique) is frustrating with large test budgets. For instance, in our experiments, such established
methods as a coverage-driven GA and swarm testing both perform worse than pure random testing
in terms of branch coverage for 5 SUTs, and worse in terms of fault detection for 3 and 2 SUTs,
respectively. �is obviously does not mean these are “bad” methods, merely that they are heuristic.
We note that the corresponding “worse than random” numbers for the LOC heuristic are 4 for
branch coverage and 1 for fault detection, so a standard that would reject it would also presumably
dismiss other well-established test generation approaches.

An expert performing an automated code audit for security testing has strong incentive to choose
the most powerful fuzzing technique, but may have li�le way of knowing up front which method
will perform best on a previously untested SUT, and lack resources to try multiple methods with full
e�ect. In contrast, if a heuristic is o�en e�ective for small test budgets, and if e�ectiveness tends to
be consistent for the same SUT over time, then it is easy to try several di�erent techniques, measure
coverage for them all, and con�gure the testing to apply the best technique. Our experimental
results show that in such a se�ing the LOC heuristic would o�en be chosen, either by itself or in
combination with another method.

Moreover, we can sometimes predict when the LOC heuristic will not be e�ective. When we
examined the simplejson harness, we predicted that LOC would not work well. �ere are only
four action classes that call any SUT code, and these four action classes only call two di�erent
methods, dumps and loads. �e majority of the interesting behavior during testing is the generation
of Python values to be encoded as JSON. �e simplejson harness includes a property that calls
both loads and dumps (to check that basic encoding and decoding work properly for all generated

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:29

Python values). Properties are checked a�er every action, ensuring that the important functions to
test are called. Actions call loads and dumps with various optional parameters, but LOC does not
help distinguish which of these are most important to test, since they all rely on the same functions.
When most testing of the SUT is accomplished by a property, not by actions, the LOC heuristic is
likely to be useless or even harmful.

On the other hand, bidict is very similar to sortedcontainers, except that sortedcontainers
has many more action classes (due to being larger and more complex). We do not know why the
LOC heuristic makes bidict testing less e�ective, but speculate that all of the high probability
actions calling the same function (via wrappers) may be responsible. �e LOC heuristic thus
concentrates too much on the update method. �e sortedcontainers high probability action
classes are much more diverse, including list slice and index modi�cations, the constructor for
a SortedDict, a copy method, set union, and dictionary keys counting. A similar problem may
explain the poor performance on biopython: more than 30% of the probability distribution is
split between just two action classes, both of which call complex (and potentially computationally
expensive) algorithms with no impact on object state, and both of which do not actually o�er much
in terms of coverage, since the harness has trouble producing non-trivial inputs that satisfy their
preconditions (most inputs generated seem to be valid but uninteresting, the equivalent of empty
lists). Finally, arrow has worse performance for LOC, as far as we can tell, almost entirely due to
the fault LOC �nds so much more frequently; unfortunately, due to the nature of the fault itself, it
is hard to make TSTL not slower, even if we ignore the failing tests (restarting testing due to these
faults is costly).

A be�er question might be, why is the LOC heuristic so e�ective, when it works? One possibility
is that during a 30 or 60 second test run, not all action classes are explored by pure random testing.
�e LOC heuristic ensures that the action classes never chosen will usually be ones with a small
LOC count—if you can’t cover everything, at least cover the “big” actions. In some cases this is
critical; for example, in the C parser, making sure that every test run at least a�empts to parse
a program is essential to e�ective testing, and explains most of the di�erence between LOC and
pure random testing for 30-60 second budgets. Alternative methods for avoiding failing to cover
important action classes (such as the bias in our LOC sampling) are likely to impose a much larger
overhead on testing than the LOC heuristic.

However, this does not explain the results for every SUT, and obviously does not explain the
continued utility of the LOC heuristic over longer runs as shown in Figures 6a-6c. For redis-py
all action classes are easily covered a�er as li�le as �ve minutes of random testing, on average. �e
C parser’s actions (with the exception of one action that never calls any SUT code, and appears
to only exist to reset uninteresting completed programs that do not contain any conditionals) are
similarly usually covered in ten minutes or less. Only sortedcontainers poses a challenge for
random testing, in terms of action-class coverage, due to a very large number of action classes, and
even for it, 25 minutes of testing almost always su�ces for complete action class coverage. While
the gap between pure random testing and the heuristic arguably closes somewhere near the point
when all classes have been tested, it does not disappear, in any of these cases, and for redis-py
and sortedcontainers, the gap never disappears, even a�er an hour of testing.

We include the AVL and heap examples precisely because they feature extremely small interfaces,
with only a few test actions, and saturate (or come close to saturating) coverage even during a 60
second run. For the heap example, pure random testing executes the least-taken action class about
40 times on average, during 30 second runs, and for AVL the only action class with a signi�cant
probability of not being taken is the action of displaying an AVL tree (which is not in any way
helpful in detecting the fault); the next least-frequently executed action class is executed about

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:30Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

10 times during 30 seconds of random testing. Why is LOC able to triple the fault detection rates
for these simple SUTs? �e best explanation we can propose is that our assumptions discussed
in the introduction to this paper are frequently true for individual SUTs: longer functions modify
system state more, and perform more complex computation. All things being equal, they contribute
more to test e�ectiveness, and calling such functions more frequently helps detect faults, both
by modifying system state in more complex ways, and performing complex computations that
expose erroneous state. An alternative way of seeing the same e�ect is to observe that the LOC
heuristic decreases the frequency with which tests perform simple query actions, such as AVL
tree traversal, checking emptiness of a container, or drawing a random byte in a cryptography
library. And, indeed, when we investigate the details of the faults found much more easily for
sortedcontainers, arrow, pyfakefs, and the toy examples, the bugs are located in unusually
large functions that also have ways to execute very li�le code (conditions under which they do
very li�le), just as we would expect. Such code is probably quite common, in that “do nothing for
simple inputs (e.g., empty lists), do a lot for complex inputs (e.g., nested lists)” is a common pa�ern
in many algorithms. LOC seems to help hit the �rst case.

More generally, one overall take-away from this paper should be that test generation heuristics
are not equally e�ective for all SUTs and test harnesses; rather, performance varies widely by
the structure of the input and state space. �is is not a novel observation, of course [98, 99].
In a sense, this goes with the territory of heuristics, vs. mathematically proven optimizations
of testing (alas, the la�er are rarely possible) [47, 51]. Examining methods in isolation is also
insu�cient to obtain maximally e�ective testing: while combining methods sometimes reduced
e�ectiveness, a combination of some method with LOC was o�en the most e�ective approach.
Assuming e�ectiveness ranking is stable for each SUT over time (at least over days or weeks, which
seems highly likely), we believe that projects seeking e�ective automated test generation should
run simple experiments to determine good test generation con�gurations once, and then re-use
those se�ings, perhaps parameterized by test budget (e.g., di�erent se�ings may be needed for
testing during development, ten minute “co�ee break” testing, “lunch-hour” testing, and overnight
runs). Because it is performed most frequently, and is most useful for debugging (faults are easiest
to �x just a�er introduction), it is fortunate that tuning very small test budgets is quite easy. In our
Python experiments, we note that the most e�ective method seldom changed between results for
as few as 10 tests and for the full 100-test experiments. E�ect sizes that ma�er can be detected in
less than an hour.

We therefore propose a simple, one-time, method for choosing a standard property-based testing
approach for an SUT under development/test. Run pure random testing, LOC alone, the GA, and
swarm, 10 times each, for 1 minute. �is requires 40 minutes, a reasonable cost for a one-time
decision that can improve small-budget testing for a long development period. If LOC performs
worse than pure random testing, use whichever method is best (and perhaps combine GA and
swarm if both outperform pure random testing, though we have no experimental data on this
combination). If LOC is be�er than pure random testing, combine it with GA, or swarm, or perhaps
both, if they also improved on random testing. Finally, and critically, if the approach chosen does
not include use of the GA, run testing without coverage instrumentation to take advantage of the
higher throughput LOC and swarm allow.

Moreover, there is o�en no reason to �nd “the best method.” In modern security fuzzing,
there is a growing awareness that predicting the best method is di�cult, and ensemble methods
are highly e�ective [22]; tools from �rms performing security audits are beginning to re�ect
this wisdom (h�ps://blog.trailo�its.com/2019/09/03/deepstate-now-supports-ensemble-fuzzing/).
Running LOC, GA, GA+LOC, and swarm+LOC for 15 seconds each might well be the best use of 60

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

https://blog.trailofbits.com/2019/09/03/deepstate-now-supports-ensemble-fuzzing/

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:31

seconds of test budget for an SUT. Certainly for larger test budgets, this is likely to be the case,
due to the diversity e�ect seen in security fuzzing, and in our fault detection results. �is diversity
e�ect, a�er all, is the inspiration for highly successful swarm veri�cation [61] and testing [52]
methods, themselves.

Finally, despite the wide variance of heuristic performance, our results for Python and Java were
surprisingly similar, given that we used the LOC heuristic in combination with quite di�erent
underlying random testing methods, for di�erent languages, di�erent styles of testing (property-
based with a harness and more complex oracle vs. automatic unit test generation for classes), and
even di�erent notions of LOC (dynamic sampling vs. purely static, and with comments/blank lines
vs. code only). We believe this provides a strong argument that LOC does provide a good, if rough,
measure of the ability of “test actions” (broadly conceived) to explore SUT/CUT behavior. In other
words, our results support our belief that, while there may be even be�er answers to the “f or g?”
question (though we suspect even these would take function size into account as one among a
number of factors), testing the function with more LOC is a good, and practically useful, approach.

5 THREATS TO VALIDITY
Internal Validity: For our SUTs, we believe the causal relationships for primary RQs are unlikely
to be spurious; we used 100 runs, and compared results using appropriate statistical tests that do
not assume normality [9]. We do not claim that the LOC heuristic is uniformly e�ective, only that,
for the SUTs considered it o�en improves fault detection, branch, and statement coverage by a
signi�cant amount. �e Java experiments are highly preliminary, essentiallly exploratory, since
they do not include fault detection results.

External Validity: �e primary threats are to external validity. �e Python results are based on
a limited set of programs with harnesses already existing in the TSTL repository when we began
this investigation. We did not modify the harnesses, and only used harnesses covering a realistic
subset of library behavior (test harnesses that might be used in practice, and in three cases that
have been used to report real faults). Two of the subjects are essentially small toy examples. �e
remaining SUTs are popular real-world Python libraries with a large number of GitHub stars or pip
downloads, but only three of the projects (SymPy, biopython, and TensorFlow) are extremely large.
However, in practice, property-based testing is usually focused on a smaller subset of a system,
and the 500-5000 LOC size of most of the subjects (around 2KLOC for most) is likely a reasonable
approximation of the size of SUT where small budget testing is likely to be highly e�ective (and
re�ects the size of many important Python libraries with subtle behaviors: Python is a highly
compact language with similarities to Haskell in terms of density [43]). �e Java projects were
chosen [3, 64, 97] to be representative open source Java projects, but may be subject to bias due to
GitHub’s unknown selection methods. While the exact cross-method comparisons are unlikely
to be preserved, we think it is highly unlikely that LOC is not at least frequently a useful bias to
impose on any test method that chooses from a random set of actions representing method or
function calls.

Construct Validity: �e test generation methods use a common code base in TSTL, and the
coverage.py tool for collecting Python coverage data. �e threats to our results would arise from
either (1) an incorrect implementation of one of our test generation methods, meaning that we
evaluate a different testing approach than we claim to, or (2) an error in coverage.py that somehow
favors one method over another. We inspected the implementations of the testing methods in TSTL
carefully, and they have been tested on multiple SUTs, including simple ones where we were able
to follow the data structures used by approaches and compare to expected results and tests. �e
coverage.py library is very widely used, and it is further unlikely that any subtle bugs in it favor

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:32Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

one testing approach more than another. However, it is possible that errors in these implementations
did bias our results. We welcome independent re-implementations to check for the possibility of
remaining consequentual errors. �e Java experiment relies only on the ability of Understand to
count LOC and Randoop to bias probabilities using a method list: any errors in Randoop itself
would only change the context of the comparison, not the impact of using LOC.

6 RELATEDWORK
�ere is a long line of work investigating relationships between static code measures such as LOC
and defects in code, though usually at the module or �le level, and never in the context of test
generation. Radjenović et al. [91] provide a detailed literature review of metrics used for fault
prediction. Zhang [115] showed that 20% of the largest modules studied contained 51-63% of the
defects. Ostrand et al. [86] showed that the largest 20% of �les contained between 59% to 83% of
of the faults. Koru et al. [67] and Syer et al. [103] reported that defect proneness increases with
module size, but at a slower rate. Other studies [5, 34, 85] also showed that LOC correlates with the
number of faults. In general, all of this work aims to advise developers to keep code small, rather
than to aid testing; it has never proven a highly useful method even for default prediction, compared
to less generic techniques [34, 44, 81, 119]. �ere are also a large number of metrics designed
speci�cally for object oriented programs. Some (referred to as CBO, WMC and RFC, in the relevant
papers) have been proposed as useful predictors of pre-release faults [12, 18, 53, 85, 88], while other
measures, such as LCOM, DIT, and NOC, did not perform well [53, 85, 85, 88, 118]. Olague et al.
[85] claimed that the QMOOD metrics [11] were suitable for fault prediction, while the MOOD
suite of metrics [28, 29] was not. Cohesion metrics (LCC and TCC) [14] had modest e�ectiveness
for predicting future faults [18, 74], and coupling metrics, proposed by Briand et al. [17] were
good predictors of future faults [16–18, 31]. Our work, rather than demonstrating a coarse, weak
correlation between code entity size and defects detected, uses code size to drive test generation,
improving code coverage and fault detection. As discussed in the conclusion, it would be interesting
to use some of the above measures, or other (semi-)static measures, than LOC to bias testing, or in
combination with LOC, including ones not highly useful in isolation. Further possible interesting
measures to investigate include code changes/revision history [19, 30, 32, 39, 94, 108–110], source
�le [21, 57, 94, 108, 109], number of contributors [56], class dependencies [100], component changes
[116, 117], estimated execution time [101, 104], or �led-issue-related metrics [32, 56, 75, 76, 110].

LOC has sometimes been used as a independent variable or as an objective function in search-
based-so�ware engineering. Fatinegun et el. [33] looked at heuristics to reduce the size of program,
and Dolado et al. [26] proposed a technique to estimate the �nal LOC size of a program. Again, the
purposes of these uses (or estimations) of LOC are completely di�erent than our proposed heuristic
to guide random test generation.

Previous approaches to tuning probabilities in random testing, such as Nighthawk [6] and ABP
[47] learned probabilities based on coverage feedback, rather than assigning �xed probabilities
based on a simple (and essentially static) metric of the tested code, the core novel concept presented
in this paper. Randoop [87] and other feedback-based approaches [112] arguably obtain part of their
e�ectiveness from an indirect avoidance of short functions that do not modify state, but pay the cost
of determining if a call produces no state change. To our knowledge the size of functions/methods
has never been used as even a factor in the decision of which API calls to make in automated test
generation. Arguably, an approach such as that taken by VUzzer [92], a fuzzer where code regions
with “deep” and “interesting” paths are prioritized, based on static analysis of control features, bears
some abstract, high-level, resemblance to our method, but the actual heuristics used and se�ings
are u�erly di�erent. �e methods with which we compare in this paper, a genetic algorithm-based

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:33

approach, and the swarm approach, are based on alternative proposed methods for guiding this
type of random testing, in particular evolutionary approaches such as EvoSuite [36] and the swarm
testing concept of con�guration diversity [52], which was originally inspired by the use of diverse
searches in model checking [59–61]. �e swarm notion of diversity also informed our decision to
evaluate combinations of orthogonal heuristics, under the assumption that no single method for
guiding testing is likely to be best in all, or even most, cases.

7 CONCLUSIONS AND FUTUREWORK
�is paper argues that simply counting the relative LOC of so�ware components can provide
valuable information for use in automated test generation. We show that biasing random testing
probabilities by the LOC counts of tested functions and methods can improve the e�ectiveness
of automated test generation for Python. �e LOC heuristic o�en produces large, statistically
signi�cant, improvements in both code coverage and fault detection. As future work, we propose
to further investigate the LOC heuristic, including for larger test budgets, given the promise shown
in a few longer runs.

More generally, the LOC heuristic opens up a new approach to biased random test generation,
based on the “f or g?” thought experiment. For instance, one promising next step is to modify the
heuristic to also bias testing towards executing code that has been the subject of a static analysis tool
warning, is less tested in existing tests, or is otherwise anomalous [93]; alternatively, we can use
cyclomatic complexity [68, 78] or another more “sophisticated” measure (e.g., number of mutants)
in place of simple LOC, or use various measures discussed in Section 6 to re�ne the LOC estimate
of desirability of a test action. For instance, for what is perhaps property-based unit testing’s most
important goal—detecting errors newly introduced into code during development—an integration
with directed swarm testing [4] to target recently changed code is both feasible and very promising.

REFERENCES
[1] Ali Aburas and Alex Groce. A method dependence relations guided genetic algorithm. In Search Based So�ware

Engineering - 8th International Symposium, SSBSE 2016, Raleigh, NC, USA, October 8-10, 2016, Proceedings, pages
267–273, 2016.

[2] Hiralal Agrawal. Dominators, super blocks, and program coverage. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’94, pages 25–34, New York, NY, USA, 1994. ACM.

[3] I�ekhar Ahmed, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen. Can testedness be e�ectively
measured? In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of So�ware
Engineering, FSE 2016, pages 547–558, New York, NY, USA, 2016. ACM.

[4] Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi. Generating focused random tests using
directed swarm testing. In Proceedings of the 25th International Symposium on So�ware Testing and Analysis, ISSTA
2016, pages 70–81, New York, NY, USA, 2016. ACM.

[5] C. Andersson and P. Runeson. A replicated quantitative analysis of fault distributions in complex so�ware systems.
IEEE Transactions on So�ware Engineering, 33(5):273–286, May 2007.

[6] James Andrews, Felix Li, and Tim Menzies. Nighthawk: A two-level genetic-random unit test data generator. In
Automated So�ware Engineering, pages 144–153, 2007.

[7] James H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing experiments? In
International Conference on So�ware Engineering, pages 402–411, 2005.

[8] Jamie Andrews, Yihao Ross Zhang, and Alex Groce. Comparing automated unit testing strategies. Technical Report
736, Department of Computer Science, University of Western Ontario, December 2010.

[9] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
so�ware engineering. So�ware Testing, Veri�cation and Reliability, 24(3):219–250, 2014.

[10] Andrea Arcuri, Muhammad Zohaib Z. Iqbal, and Lionel C. Briand. Formal analysis of the e�ectiveness and pre-
dictability of random testing. In International Symposium on So�ware Testing and Analysis, pages 219–230, 2010.

[11] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented design quality assessment. IEEE Transactions on
So�ware Engineering, 28(1):4–17, Jan 2002.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

3:34Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

[12] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design metrics as quality indicators. IEEE
Transactions on So�ware Engineering, 22(10):751–761, Oct 1996.

[13] Ned Batchelder. Coverage.py. h�ps://coverage.readthedocs.org/en/coverage-4.0.1/, 2015.
[14] James M. Bieman and Byung-Kyoo Kang. Cohesion and reuse in an object-oriented system. SIGSOFT So�w. Eng.

Notes, 20(SI):259–262, August 1995.
[15] Marcel Böhme and Soumya Paul. On the e�ciency of automated testing. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of So�ware Engineering, FSE 2014, pages 632–642, New York, NY, USA, 2014.
ACM.

[16] Lionel C. Briand and Jürgen Wüst. Empirical studies of quality models in object-oriented systems. volume 56 of
Advances in Computers, pages 97 – 166. Elsevier, 2002.

[17] Lionel C. Briand, Jürgen Wüst, Stefan V. Ikonomovski, and Hakim Lounis. Investigating quality factors in object-
oriented designs: An industrial case study. In Proceedings of the 21st International Conference on So�ware Engineering,
ICSE ’99, pages 345–354, New York, NY, USA, 1999. ACM.

[18] Lionel C. Briand, Jürgen Wüst, and Hakim Lounis. Replicated case studies for investigating quality factors in
object-oriented designs. Empirical So�ware Engineering, 6(1):11–58, 2001.

[19] G. Buchgeher, C. Ernstbrunner, R. Ramler, and M. Lusser. Towards tool-support for test case selection in manual
regression testing. In 2013 IEEE Sixth International Conference on So�ware Testing, Veri�cation and Validation
Workshops, pages 74–79, March 2013.

[20] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Operating System Design and Implementation, pages 209–224, 2008.

[21] R. Carlson, H. Do, and A. Denton. A clustering approach to improving test case prioritization: An industrial case
study. In 2011 27th IEEE International Conference on So�ware Maintenance (ICSM), pages 382–391, Sep. 2011.

[22] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou, Xun Jiao, and Zhuo Su. Enfuzz:
Ensemble fuzzing with seed synchronization among diverse fuzzers. In 28th {USENIX} Security Symposium ({USENIX}
Security 19), pages 1967–1983, 2019.

[23] Kalyan-Ram Chilakamarri and Sebastian Elbaum. Reducing coverage collection overhead with disposable instrumen-
tation. In So�ware Reliability Engineering, 2004. ISSRE 2004. 15th International Symposium on, pages 233–244. IEEE,
2004.

[24] Travis CI. Customizing the build: Build timeouts. h�ps://docs.travis-ci.com/user/customizing-the-build/
#Build-Timeouts.

[25] Koen Claessen and John Hughes. �ickCheck: a lightweight tool for random testing of haskell programs. In ICFP,
pages 268–279, 2000.

[26] J. J. Dolado. A validation of the component-based method for so�ware size estimation. IEEE Transactions on So�ware
Engineering, 26(10):1006–1021, Oct 2000.

[27] Ma�hew B. Dwyer, Suze�e Person, and Sebastian Elbaum. Controlling factors in evaluating path-sensitive error
detection techniques. In Foundations of So�ware Engineering, pages 92–104, 2006.

[28] F. Brito e Abreu and W. Melo. Evaluating the impact of object-oriented design on so�ware quality. In Proceedings of
the 3rd International So�ware Metrics Symposium, pages 90–99, Mar 1996.

[29] Fernando Brito e Abreu and Rogério Carapuça. Object-oriented so�ware engineering: Measuring and controlling the
development process. In Proc. Int’l Conf. So�ware �ality (QSIC), 1994.

[30] E. D. Ekelund and E. Engström. E�cient regression testing based on test history: An industrial evaluation. In 2015
IEEE International Conference on So�ware Maintenance and Evolution (ICSME), pages 449–457, Sep. 2015.

[31] Kalhed El Emam, Saı̈da Benlarbi, Nishith Goel, and Shesh N. Rai. �e confounding e�ect of class size on the validity
of object-oriented metrics. IEEE Trans. So�w. Eng., 27(7):630–650, July 2001.

[32] E. Engström, P. Runeson, and G. Wikstrand. An empirical evaluation of regression testing based on �x-cache
recommendations. In 2010 �ird International Conference on So�ware Testing, Veri�cation and Validation, pages 75–78,
April 2010.

[33] D. Fatiregun, M. Harman, and R. M. Hierons. Evolving transformation sequences using genetic algorithms. In Source
Code Analysis and Manipulation, Fourth IEEE International Workshop on, pages 65–74, Sept 2004.

[34] N. E. Fenton and N. Ohlsson. �antitative analysis of faults and failures in a complex so�ware system. IEEE
Transactions on So�ware Engineering, 26(8):797–814, Aug 2000.

[35] M. Fowler. Domain-Speci�c Languages. Addison-Wesley Professional, 2010.
[36] Gordon Fraser and Andrea Arcuri. EvoSuite: automatic test suite generation for object-oriented so�ware. In

Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of So�ware
Engineering, ESEC/FSE ’11, pages 416–419. ACM, 2011.

[37] Gregory Gay. To call, or not to call: Contrasting direct and indirect branch coverage in test generation. In Proceedings
of the 11th International Workshop on Search-Based So�ware Testing, SBST ’18, pages 43–50, New York, NY, USA, 2018.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

https://coverage.readthedocs.org/en/coverage-4.0.1/
https://docs.travis-ci.com/user/customizing-the-build/#Build-Timeouts
https://docs.travis-ci.com/user/customizing-the-build/#Build-Timeouts

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:35

ACM.
[38] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Amin Alipour, and Darko Marinov. Comparing

non-adequate test suites using coverage criteria. In International Symposium on So�ware Testing and Analysis, pages
302–313, 2013.

[39] Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. An empirical evaluation and comparison of
manual and automated test selection. In Proceedings of the 29th ACM/IEEE International Conference on Automated
So�ware Engineering, ASE ’14, page 361–372, New York, NY, USA, 2014. Association for Computing Machinery.

[40] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random testing. In Programming
Language Design and Implementation, pages 213–223, 2005.

[41] Peter Goodman. A fuzzer and a symbolic executor walk into a cloud. h�ps://blog.trailo�its.com/2016/08/02/
engineering-solutions-to-hard-program-analysis-problems/, August 2016.

[42] Rahul Gopinath, Carlos Jensen, and Alex Groce. Code coverage for suite evaluation by developers. In Proceedings of
the 36th International Conference on So�ware Engineering, ICSE 2014, pages 72–82, New York, NY, USA, 2014. ACM.

[43] Rahul Gopinath, Carlos Jensen, and Alex Groce. Mutations: How close are they to real faults? In International
Symposium on So�ware Reliability Engineering, pages 189–200, 2014.

[44] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Predicting fault incidence using so�ware change history.
IEEE Transactions on So�ware Engineering, 26(7):653–661, July 2000.

[45] Alex Groce and Martin Erwig. Finding common ground: Choose, assert, and assume. In International Workshop on
Dynamic Analysis, pages 12–17, 2012.

[46] Alex Groce, Alan Fern, Martin Erwig, Jervis Pinto, Tim Bauer, and Amin Alipour. Learning-based test programming
for programmers. In International Symposium on Leveraging Applications of Formal Methods, Veri�cation and Validation,
pages 752–786, 2012.

[47] Alex Groce, Alan Fern, Jervis Pinto, Tim Bauer, Amin Alipour, Martin Erwig, and Camden Lopez. Lightweight
automated testing with adaptation-based programming. In IEEE International Symposium on So�ware Reliability
Engineering, pages 161–170, 2012.

[48] Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized di�erential testing as a prelude to formal veri�cation.
In International Conference on So�ware Engineering, pages 621–631, 2007.

[49] Alex Groce and Jervis Pinto. A li�le language for testing. In NASA Formal Methods Symposium, pages 204–218, 2015.
[50] Alex Groce, Jervis Pinto, Pooria Azimi, Pranjal Mi�al, Josie Holmes, and Kevin Kellar. TSTL: the template scripting

testing language. h�ps://github.com/agroce/tstl, May 2015.
[51] Alex Groce and Willem Visser. Heuristics for model checking Java programs. So�ware Tools for Technology Transfer,

6(4):260–276, 2004.
[52] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm testing. In International Symposium

on So�ware Testing and Analysis, pages 78–88, 2012.
[53] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented metrics on open source so�ware for fault

prediction. IEEE Transactions on So�ware Engineering, 31(10):897–910, Oct 2005.
[54] Richard Hamlet. Random testing. In Encyclopedia of So�ware Engineering, pages 970–978. Wiley, 1994.
[55] Mark Harman and Peter O’Hearn. From start-ups to scale-ups: Open problems, challenges and myths in static and

dynamic program analysis for testing and veri�cation. In IEEE International Working Conference on Source Code
Analysis and Manipulation, 2018.

[56] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. �e art of testing less without sacri�cing
quality. In Proceedings of the 37th International Conference on So�ware Engineering - Volume 1, ICSE ’15, page 483–493.
IEEE Press, 2015.

[57] Ma�hias Hirzel and Herbert Klaeren. Graph-walk-based selective regression testing of web applications created with
Google web toolkit. In Gemeinsamer Tagungsband der Workshops der Tagung So�ware Engineering 2016 (SE 2016),
Wien, 23.-26. Februar 2016, pages 55–69, 2016.

[58] Josie Holmes, Alex Groce, Jervis Pinto, Pranjal Mi�al, Pooria Azimi, Kevin Kellar, and James O’Brien. TSTL: the
template scripting testing language. International Journal on So�ware Tools for Technology Transfer, 2017. Accepted
for publication.

[59] Gerard Holzmann, Rajeev Joshi, and Alex Groce. Swarm veri�cation. In Automated So�ware Engineering, pages 1–6,
2008.

[60] Gerard Holzmann, Rajeev Joshi, and Alex Groce. Tackling large veri�cation problems with the swarm tool. In SPIN
Workshop on Model Checking of So�ware, pages 134–143, 2008.

[61] Gerard Holzmann, Rajeev Joshi, and Alex Groce. Swarm veri�cation techniques. IEEE Transactions on So�ware
Engineering, 37(6):845–857, 2011.

[62] Laura Inozemtseva. Supplemental results for ”coverage is not correlated…”. h�p://inozemtseva.com/research/2014/
icse/coverage. Viewed May 2017; site appears to no longer be available, though referred to in text of the paper.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://github.com/agroce/tstl
http://inozemtseva.com/research/2014/icse/coverage
http://inozemtseva.com/research/2014/icse/coverage

3:36Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

[63] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test suite e�ectiveness. In Proceedings
of the 36th International Conference on So�ware Engineering, ICSE 2014, pages 435–445, New York, NY, USA, 2014.
ACM.

[64] René Just, Darioush Jalali, and Michael D Ernst. Defects4J: A database of existing faults to enable controlled testing
studies for java programs. In Proceedings of the 2014 International Symposium on So�ware Testing and Analysis, pages
437–440. ACM, 2014.

[65] Kazuki Kaneoka. Feedback-based random test generator for TSTL. Technical Report MS thesis, Oregon State
University, 2017.

[66] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. Evaluating fuzz testing. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, pages 2123–2138, New York,
NY, USA, 2018. ACM.

[67] A. G. Koru, D. Zhang, K. El Emam, and H. Liu. An investigation into the functional form of the size-defect relationship
for so�ware modules. IEEE Transactions on So�ware Engineering, 35(2):293–304, March 2009.

[68] Davy Landman, Alexander Serebrenik, Eric Bouwers, and Jurgen J. Vinju. Empirical analysis of the relationship
between CC and SLOC in a large corpus of java methods and C functions. Journal of So�ware: Evolution and Process,
28(7):589–618, 2016.

[69] David R. MacIver. Hypothesis: Test faster, �x more. h�p://hypothesis.works/, March 2013.
[70] David R. MacIver. Rule based stateful testing. h�p://hypothesis.works/articles/rule-based-stateful-testing/, April

2016.
[71] David R. MacIver. Python Coverage could be fast. h�ps://www.drmaciver.com/2017/09/

python-coverage-could-be-fast/, September 2017.
[72] David R. MacIver. Coverage adds a lot of overhead when the base test is fast. h�ps://github.com/HypothesisWorks/

hypothesis/issues/914, 2017 October.
[73] David R. MacIver and PyPI. Usage stats for hypothesis on PyPI. h�ps://libraries.io/pypi/hypothesis/usage.
[74] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the conceptual cohesion of classes for fault prediction

in object-oriented systems. IEEE Trans. So�w. Eng., 34(2):287–300, March 2008.
[75] D. Marijan. Multi-perspective regression test prioritization for time-constrained environments. In 2015 IEEE

International Conference on So�ware �ality, Reliability and Security, pages 157–162, Aug 2015.
[76] D. Marijan, A. Gotlieb, and S. Sen. Test case prioritization for continuous regression testing: An industrial case study.

In 2013 IEEE International Conference on So�ware Maintenance, pages 540–543, Sep. 2013.
[77] Paul Dan Marinescu and Cristian Cadar. make test-zesti: a symbolic execution solution for improving regression

testing. In International Conference on So�ware Engineering, pages 716–726, 2012.
[78] T. J. McCabe. A complexity measure. IEEE Trans. So�w. Eng., 2(4):308–320, July 1976.
[79] William McKeeman. Di�erential testing for so�ware. Digital Technical Journal of Digital Equipment Corporation,

10(1):100–107, 1998.
[80] Phil McMinn. Search-based so�ware test data generation: A survey. So�ware Testing, Veri�cation and Reliability,

14:105–156, 2004.
[81] T. Menzies, J. S. Di Stefano, M. Chapman, and K. McGill. Metrics that ma�er. In 27th Annual NASA Goddard/IEEE

So�ware Engineering Workshop, 2002. Proceedings., pages 51–57, Dec 2002.
[82] Rickard Nilsson, Shane Auckland, Mark Sumner, and Sanjiv Sahayam. Scalacheck user guide. h�ps://github.com/

rickynils/scalacheck/blob/master/doc/UserGuide.md, September 2016.
[83] J. O�u� and A. Abdurazik. In Mutation 2000: Mutation Testing in the Twentieth and the Twenty First Centuries, 2000.
[84] Peter Ohmann, David Bingham Brown, Naveen Neelakandan, Je� Linderoth, and Ben Liblit. Optimizing customized

program coverage. In Automated So�ware Engineering (ASE), 2016 31st IEEE/ACM International Conference on, pages
27–38. IEEE, 2016.

[85] Hector M. Olague, Letha H. Etzkorn, Sampson Gholston, and Stephen �a�lebaum. Empirical validation of three
so�ware metrics suites to predict fault-proneness of object-oriented classes developed using highly iterative or agile
so�ware development processes. IEEE Transactions on So�ware Engineering, 33(6):402–419, June 2007.

[86] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location and number of faults in large so�ware systems.
IEEE Transactions on So�ware Engineering, 31(4):340–355, April 2005.

[87] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and �omas Ball. Feedback-directed random test generation.
In International Conference on So�ware Engineering, pages 75–84, 2007.

[88] G. J. Pai and J. Bechta Dugan. Empirical analysis of so�ware fault content and fault proneness using bayesian
methods. IEEE Transactions on So�ware Engineering, 33(10):675–686, Oct 2007.

[89] Manolis Papadakis and Konstantinos Sagonas. A PropEr integration of types and function speci�cations with
property-based testing. In Proceedings of the 2011 ACM SIGPLAN Erlang Workshop, pages 39–50, New York, NY,
September 2011. ACM Press.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

http://hypothesis.works/
http://hypothesis.works/articles/rule-based-stateful-testing/
https://www.drmaciver.com/2017/09/python-coverage-could-be-fast/
https://www.drmaciver.com/2017/09/python-coverage-could-be-fast/
https://github.com/HypothesisWorks/hypothesis/issues/914
https://github.com/HypothesisWorks/hypothesis/issues/914
https://libraries.io/pypi/hypothesis/usage
https://github.com/rickynils/scalacheck/blob/master/doc/UserGuide.md
https://github.com/rickynils/scalacheck/blob/master/doc/UserGuide.md

Using Relative Lines of Code to Guide Automated Test Generation for Python 3:37

[90] Suze�e Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed incremental symbolic execution. In
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’11,
pages 504–515, 2011.

[91] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. So�ware fault prediction metrics. Information
and So�ware Technologies, 55(8):1397–1418, August 2013.

[92] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giu�rida, and Herbert Bos. VUzzer: Application-
aware evolutionary fuzzing. In Network and Distributed Security Symposium (NDSS), 2017.

[93] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and Premkumar Devanbu.
On the ”naturalness” of buggy code. In Proceedings of the 38th International Conference on So�ware Engineering, ICSE
’16, pages 428–439, New York, NY, USA, 2016. ACM.

[94] Ripon K Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E Perry. An information retrieval approach for
regression test prioritization based on program changes. In 2015 IEEE/ACM 37th IEEE International Conference on
So�ware Engineering, volume 1, pages 268–279. IEEE, 2015.

[95] Scienti�c Toolworks, Inc. Understand™ Static Code Analysis Tool. h�ps://scitools.com/, 2017.
[96] Kang Seonghoon. Tutorial: How to collect test coverages for rust project. h�ps://users.rust-lang.org/t/

tutorial-how-to-collect-test-coverages-for-rust-project/650, March 2015.
[97] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and Andrea Arcuri. Do automatically

generated unit tests �nd real faults? an empirical study of e�ectiveness and challenges (t). In Automated So�ware
Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pages 201–211. IEEE, 2015.

[98] Sina Shamshiri, José Miguel Rojas, Gordon Fraser, and Phil McMinn. Random or genetic algorithm search for
object-oriented test suite generation? In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’15, page 1367–1374, New York, NY, USA, 2015. Association for Computing Machinery.

[99] Sina Shamshiri, José Miguel Rojas, Luca Gazzola, Gordon Fraser, Phil McMinn, Leonardo Mariani, and Andrea Arcuri.
Random or evolutionary search for object-oriented test suite generation? So�ware Testing, Veri�cation and Reliability,
28(4):e1660, 2018.

[100] M. Skoglund and P. Runeson. A case study of the class �rewall regression test selection technique on a large scale
distributed so�ware system. In 2005 International Symposium on Empirical So�ware Engineering, 2005., pages 10 pp.–,
Nov 2005.

[101] Amitabh Srivastava and Jay �iagarajan. E�ectively prioritizing tests in development environment. SIGSOFT So�w.
Eng. Notes, 27(4):97–106, July 2002.

[102] Ma� Staats, Michael W. Whalen, and Mats P.E. Heimdahl. Programs, tests, and oracles: �e foundations of testing
revisited. In ICSE 2011 - 33rd International Conference on So�ware Engineering, Proceedings of the Conference,
Proceedings - International Conference on So�ware Engineering, pages 391–400, July 2011. 33rd International
Conference on So�ware Engineering, ICSE 2011 ; Conference date: 21-05-2011 �rough 28-05-2011.

[103] M. D. Syer, M. Nagappan, B. Adams, and A. E. Hassan. Replicating and re-evaluating the theory of relative defect-
proneness. IEEE Transactions on So�ware Engineering, 41(2):176–197, Feb 2015.

[104] Sahar Tahvili, Wasif Afzal, Mehrdad Saadatmand, Markus Bohlin, Daniel Sundmark, and Stig Larsson. Towards
earlier fault detection by value-driven prioritization of test cases using fuzzy topsis. In Information Technology: New
Generations, pages 745–759. Springer, 2016.

[105] Mustafa M. Tikir and Je�rey K. Hollingsworth. E�cient instrumentation for code coverage testing. In Proceedings of
the 2002 ACM SIGSOFT International Symposium on So�ware Testing and Analysis, ISSTA ’02, pages 86–96, New York,
NY, USA, 2002. ACM.

[106] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan Liu, Premkumar T. Devanbu, Bogdan
Vasilescu, and Cindy Rubio-González. Bugswarm: mining and continuously growing a dataset of reproducible failures
and �xes. In ICSE, pages 339–349. IEEE / ACM, 2019.

[107] user1689822. python AVL tree insertion. h�p://stackover�ow.com/questions/12537986/python-avl-tree-insertion,
September 2012.

[108] L. White and B. Robinson. Industrial real-time regression testing and analysis using �rewalls. In 20th IEEE International
Conference on So�ware Maintenance, 2004. Proceedings., pages 18–27, Sep. 2004.

[109] Lee White, Khaled Jaber, Brian Robinson, and Václav Rajlich. Extended �rewall for regression testing: An experience
report. J. So�w. Maint. Evol., 20(6):419–433, November 2008.

[110] G. Wikstrand, R. Feldt, J. K. Gorantla, W. Zhe, and C. White. Dynamic regression test selection based on a �le
cache an industrial evaluation. In 2009 International Conference on So�ware Testing Veri�cation and Validation, pages
299–302, April 2009.

[111] Qian Yang, J Jenny Li, and David M Weiss. A survey of coverage-based testing tools. �e Computer Journal,
52(5):589–597, 2007.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

https://scitools.com/
https://users.rust-lang.org/t/tutorial-how-to-collect-test-coverages-for-rust-project/650
https://users.rust-lang.org/t/tutorial-how-to-collect-test-coverages-for-rust-project/650
http://stackoverflow.com/questions/12537986/python-avl-tree-insertion

3:38Josie Holmes, I�ekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and Alex Groce

[112] Kohsuke Yatoh, Kazunori Sakamoto, Fuyuki Ishikawa, and Shinichi Honiden. Feedback-controlled random test
generation. In Proceedings of the 2015 International Symposium on So�ware Testing and Analysis, ISSTA 2015, pages
316–326, New York, NY, USA, 2015. ACM.

[113] Michal Zalewski. american fuzzy lop (2.35b). h�p://lcamtuf.coredump.cx/a�/, November 2014.
[114] Chaoqiang Zhang, Alex Groce, and Mohammad Amin Alipour. Using test case reduction and prioritization to improve

symbolic execution. In International Symposium on So�ware Testing and Analysis, pages 160–170, 2014.
[115] H. Zhang. An investigation of the relationships between lines of code and defects. In 2009 IEEE International

Conference on So�ware Maintenance, pages 274–283, Sept 2009.
[116] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley. Applying regression test selection for cots-based

applications. In Proceedings of the 28th International Conference on So�ware Engineering, ICSE ’06, page 512–522, New
York, NY, USA, 2006. Association for Computing Machinery.

[117] Jiang Zheng, Laurie Williams, and Brian Robinson. Pallino: Automation to support regression test selection for
cots-based applications. In Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated
So�ware Engineering, ASE ’07, page 224–233, New York, NY, USA, 2007. Association for Computing Machinery.

[118] Yuming Zhou and Hareton Leung. Empirical analysis of object-oriented design metrics for predicting high and low
severity faults. IEEE Transactions on So�ware Engineering, 32(10):771–789, Oct 2006.

[119] T. Zimmermann and N. Nagappan. Predicting defects using network analysis on dependency graphs. In 2008
ACM/IEEE 30th International Conference on So�ware Engineering, pages 531–540, May 2008.

ACM Transactions on So�ware Engineering and Methodology, Vol. 1, No. 2, Article 3. Publication date: February 2019.

http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	1.1 Small-Budget Automated Test Generation
	1.2 The High Cost of Code Coverage
	1.3 Solution: Count Relative Lines of Code
	1.4 Contributions

	2 LOC-Based Heuristics
	2.1 General LOC Heuristic Definition
	2.2 Python Implementation

	3 Experimental Evaluation
	3.1 Research Questions
	3.2 Experimental Setup and Methodology
	3.3 Results Comparing Test Generation Methods Supported by TSTL (RQs 1, 2, and 3)
	3.4 Analysis Combining All Subjects (RQ1-RQ3)
	3.5 The Cost of Coverage
	3.6 Comparison with python-afl
	3.7 Comparison with Feedback-Directed Random Testing
	3.8 Using Outdated LOC Estimates
	3.9 Using LOC with Larger Test Budgets

	4 Summary and Discussion
	4.1 Core Research Questions
	4.2 Supplemental and Exploratory Results
	4.3 Discussion

	5 Threats to Validity
	6 Related Work
	7 Conclusions and Future Work
	References

