
If You Can’t Kill a Supermutant,

You Have a Problem

Rahul Gopinath∗, Björn Mathis†, Andreas Zeller‡

Saarland University

Email: ∗rahul@gopinath.org, †bjoern.mathis@cispa.saarland

, ‡zeller@cs.uni-saarland.de

Abstract—Quality of software test suites can be effectively
and accurately measured using mutation analysis. Traditional
mutation involves seeding first and sometimes higher order
faults into the program, and evaluating each for detection.
However, traditional mutants are often heavily redundant, and
it is desirable to produce the complete matrix of test cases vs
mutants detected by each. Unfortunately, even the traditional
mutation analysis has a heavy computational footprint due to
the requirement of independent evaluation of each mutant by
the complete test suite, and consequently the cost of evaluation
of complete kill matrix is exorbitant.

We present a novel approach of combinatorial evaluation of
multiple mutants at the same time that can generate the complete
mutant kill matrix with lower computational requirements.

Our approach also has the potential to reduce the cost of
execution of traditional mutation analysis especially for test suites
with weak oracles such as machine-generated test suites, while at
the same time liable to only a linear increase in the time taken
for mutation analysis in the worst case.

I. INTRODUCTION

Mutation analysis involves exhaustive injection and analysis

of first and higher order faults [8]. Traditional mutation analysis

involves evaluating each mutant by running individual test

cases against that mutant until the mutant is killed (detected)

by one of the test cases. One of the problems with mutation

analysis is the issue of redundant mutants [17]. That is, a large

number of mutants represent faults that are strictly subsumed

by other mutants, and hence contributes nothing to the overall

effectiveness of mutation analysis [18], [31]. Another major

problem with mutation analysis is the heavy computational

requirement. Each mutant needs to be evaluated independently

by potentially the complete test suite in order to determine

if the mutant was successfully detected by one of the test

cases [28]. As the number of mutants that can be generated

from even a simple program is very large, mutation analysis

is computationally intensive, which has limited its practicality.

The best method for accounting for redundancy in mutants

is of course to simply evaluate the complete set of mutants

against the full set of test cases, and eliminate redundant

mutants resulting in the so-called minimal mutants [1]. We call

the resulting matrix of results the mutant kill matrix1.

The main reason for the high cost of mutation analysis is

the requirement of an independent evaluation of each mutant.

This is especially aggravated in the case of computing the

1 The mutant kill matrix is also used for other research [24].

Detected: yes

yes no

yes yes

Fig. 1: Evaluation of supermutants. The filled dots indicate

mutations applied within the supermutants. The non detected

mutants are indicated by doubled borders.

mutant kill matrix2 because each mutant needs to be evaluated

by executing it against each test case. Note that the number

of mutants that can be generated from a program is typically

of the same magnitude as the number of lines in a program.

This in turn results in a much larger number of test executions,

which means that any method that can reduce the number of

test executions needed can have a large impact on the total

cost of analysis.

We propose a novel method for computing the mutant kill

matrix that can potentially avoid the requirement of individual

evaluation of each mutant using supermutants. A supermutant

(see Figure 3) is a mutant of a program consisting of several

small changes in the program, all applied at once. From

previous research [9], we know that the incidence of fault

masking is very rare Hence, if a test suite cannot find the

supermutant, it is unlikely that it is able to find one of the

individual mutants. Hence, when ever we find a supermutant

that escapes detection, we mark the constituent mutants as

having escaped detection by the test suite. On the other hand,

if the supermutant is detected, we partition the component

mutations in the supermutant, generate two mutants containing

each set of mutations, and recurse into the mutants generated

from applying each set.

The biggest threat to the effectiveness of our technique is

2 While in traditional mutation analysis, one stops evaluation of a mutant
as soon as any of the covering test cases manage to kill the mutant being
considered. However, if one wants to compute the mutant kill matrix, one
needs to execute the complete set of covering test cases. That is, traditional
mutation analysis can have a complexity of n× 1 in the best case, and n× t

in the worst case, where n is the number of mutants, and t the number of test
cases, for computing the mutant kill matrix, one always has n× t complexity.



the presence of trivially killed mutants that can force recursion

into the child nodes containing first order mutants. Indeed,

a majority of mutants are trivial, and can be detected by a

covering test case. Hence, we filter out these mutations by

using a minimal3 coverage-adequate4 test-suite with assertions

removed (We also ensure that any single mutant is evaluated by

exactly one test case). Any mutant that is killed by a covering

test suite with its assertions removed may be marked as killed

by all other test cases that covers that mutant, and hence need

not be evaluated by supermutants again.

The steps for evaluation of supermutants are as follows:

A. Evaluating supermutants for the mutant kill matrix

We only consider lexically non-overlapping mutations such

as first-order deletions initially. We then discuss how other

mutations can be evaluated similarly.

1) Generate a test suite that is minimally coverage adequate.

2) Identify mutants that can be killed by this minimal test

suite. Next, verify that the mutants are indeed trivial to

kill, and hence any covering test case will detect them

(This can be accomplished by removing the assertions

before executing the test suite).

3) Generate a composite supermutant containing all the

first-order mutations possible in the program.

4) Pick any test case that covers any of the mutations and

check whether it kills the composite supermutant.

5) If the composite supermutant was not killed, declare the

test case as killing none of the component mutants.

6) If the composite supermutant was killed by the test case,

partition the mutations randomly into two equal groups,

and combine each group into a child supermutant.

7) Evaluate the test case on each child supermutant.

8) If the child supermutant is actually a first-order mutant,

we evaluate the test case on it and stop and return the

result of evaluation for that mutation because there is

nothing left to recursively evaluate.

9) If one or both of the child supermutants are detected by

the test case, we recursively evaluate smaller and smaller

partitions until we reach the first-order mutants.

10) If none of the children are detected, we prioritize this

mutant for later evaluation, but return with an empty

mutant kill matrix.

11) The evaluation results in the mutant kill matrix for that

specific test case.

12) Continue the evaluation for each test case in the same

manner to get the complete mutant kill matrix.

How do we deal with mutation points such as arithmetic

operators and boolean operators that can result in multiple

overlapping mutations? While these mutations cannot be

included in the same supermutant, one can produce multiple

3 We use a minimal test suite to ensure that we use the least effort necessary
to remove these trivial mutants.

4 From here on, we consider any subset of test cases of the complete test
suite to be coverage adequate if it has covered all the statements possible by
the complete test suite. We also assume that we have the coverage information
for each of the test cases.

supermutants each containing non-overlapping mutations, and

evaluate them as we detailed above.

What is the runtime for the evaluation of supermutants?

In the best case, we will find that the supermutant is not

killable by any of the test cases in which case, we require

only a single execution of the supermutant per covering test

case. If the mutations and test suites are such that we have a

high mutation score test suite, but with low redundancy, the

first supermutant would be detected, and we will be forced

to recurse into the child supermutants. However, it is likely

that at each step a significant fraction of test cases would

fail to detect the supermutant. If a test case fails to detect

the supermutant, then there is little chance of it detecting its

component mutants due to the rarity of fault masking. Hence

these test cases can be be eliminated from deeper recursion on

that particular supermutant. Thus, even in this scenario, our

technique has the potential to be significantly cheaper. If on

the other hand, all mutants are indeed killable by each test

case, then we will require 2n− 1 evaluations of mutants per

test case rather than n mutant evaluations per test case where

n is the number of mutations possible. Indeed, the stronger

the mutants are, or lower the mutation score is, the higher

the probability that supermutants may result in significant cost

savings.

The same procedure may be adapted for traditional mutation

analysis, and can prove gainful when the test suite has weak

oracles, and the probable mutation score is low. The adaptation

of the supermutants for traditional mutation analysis is simple.

B. Adapting supermutants for traditional mutation analysis

1) Generate a test suite that is minimally coverage adequate.

2) Use this coverage adequate test suite in the first phase

of mutation analysis to identify trivial mutants that are

easily killed, and the test cases sufficient to kill this set

of trivial mutants.

3) Collect the remaining test suites and remaining mutations

possible on the program.

4) Produce a supermutant with all remaining mutations.

(Steps until this point is common.)

5) Identify and produce a test suite that covers the program

locations of mutations.

6) Run the test suite against the supermutant by choosing

one test case at a time. Stop at the first test case that

was able to kill the super mutant.

7) If the supermutant was not detected, None of the mutants

could be found by the given test suite.

8) If the supermutant was detected, partition the mutations

in the supermutant into two equal groups randomly.

Generate a new test suite by discarding the test cases

from the previous test suite that were evaluated, and

failed to detect the parent supermutant. Apply the new

test suite against each smaller supermutant.

9) If neither mutant was detected by the test suite, mark

the parent supermutant for later analysis

10) If one of the child supermutants were detected, proceed

to analyze the child mutant similarly until we reach



first-order mutants.

11) If both of the child supermutants were detected, proceed

to analyse both child mutants similarly.

12) Once we reach the leaf node, mark the simple mutants

as detected if they are detected.

The procedure of evaluation of a supermutant is summarized

in Figure 1. As can be seen in the figure, at each step, the

supermutant is decomposed into smaller and smaller sets of

mutations, ending when the mutations are the smallest possible.

There are a few possible gains from using such a technique.

In the first case, where one is interested in speeding up

traditional mutation analysis, as long as the oracle being tested

against is weak5 or the mutants are stubborn6, or there are

numerous equivalent mutants, we have a reasonable chance

of being faster than the traditional – mutation at a time –

analysis. Second, complex mutations where the supermutant

is detected but neither the child mutants are detected, are

interesting in their own right, because the child mutants have

a higher probability of being non-equivalent and stubborn on

account of there being at least some effect in the program due

to the mutation. The supermutant can also be minimized to

1-minimal form7 using delta debugging to produce a strong

higher-order mutant. There are further avenues for optimization.

For example, the utility of this approach is enhanced if there

is a means to classify stubborn mutants so that they can be

clubbed together. It was previously found [33] that once we

consider reachability, specific operators that produce off-by-one

errors are more likely to result in stubborn mutants. These

mutations could then be chosen to form a supermutant that

may be evaluated separately.

C. Reduction of supermutants to 1-minimal form

The evaluation procedure of supermutants may often result

in situations where the parent supermutant was detected by a

particular test case while neither of the children are detected by

the same test case. When this happens, it is an indication that the

combination of mutations expresses a fault that is different from

the faults originally expressed by the individual mutations. In

such cases, one may apply the delta debugging [38] algorithm

to isolate the particular mutations necessary to trigger the

fault. By carefully varying the partitions during each mutation

analysis, one may collect different higher-order mutants that

express different faults and hence improve the effectiveness of

mutation analysis.

We note that traditional mutation analysis is most expensive

when it evaluates stubborn and equivalent mutants – where a

majority of test cases do not detect the mutant being examined.

It is precisely for these mutants that our technique is most

effective. Hence we believe that supermutants can be more

5A weak oracle is an oracle that asserts weak facts such as no crash.
6 A mutant is stubborn if a high-quality test suite is unable to detect it, but

is not equivalent [37].
7 A 1-minimal supermutant is a mutant that is detected by some test suite

such that removal of any of the component mutations results in it not being
detected by that test suite.

effective provided one is able to identify these mutants in

advance.

Contributions:

• A novel method for reducing the computational overhead

in producing a complete mutant kill matrix provided the

mutants could be pre-classified as trivial or stubborn.

• A novel method for reducing the computational overhead

for traditional mutation analysis especially for test suites

with weak oracles.

II. CASE STUDIES

Our case study is aimed at investigating the effectiveness of

supermutants in reducing the computational effort required

for mutation analysis. We consider two programs for our

study – the triangle program and urlparse program. The

effectiveness of supermutants is linked strongly to the test

suite being used. Hence, for both programs, we evaluate

the effectiveness of our technique using two test suites of

different oracular strengths. For evaluating the mutation score

of both programs, for demonstration purposes, we chose simple

statement deletion of leaf statements. That is, for the triangle,

only return statements would be replaced with pass. We evalute

supermutants on these two programs below.

A. Analyzing the triangle program

Figure 2 contains the well known triangle classification

program [22] used in numerous mutation studies [13], [20],

[27], along with two test suites given in Figure 5 and Figure 6.

The triangle program classifies any given valid numeric triple

as one of the three: Equilateral, Isosceles, Scalene. The test

suite in Figure 5 is a strong test suite (100% coverage) with a

weak oracle which only checks for the validity of the triple,

while the test suite in Figure 6 is a test suite with similar

coverage, but with a stronger oracle. The small triangle marks

in Figure 2 indicate the possible mutations. We first use a

statement coverage adequate test suite to filter out trivial

mutants. The ◮ mark represent trivial mutants that are removed

by the test suite in Figure 5. Figure 3 shows the preliminary

supermutant generated after removing the trivially detected

mutants.

In this case, evaluating the supermutant in Figure 3 with

the test suite in Figure 5 results in the supermutant not being

found, which immediately suggests that none of the mutants

are likely to be found, resulting in saving 5 mutant evaluations.

However, we note that the savings are also dependent on the

strength of test suite. For example, the test suite in Figure 6

will not result in any savings as this test suite is both minimally

coverage adequate and strong enough to detect all mutants with

the first test case that covers them. That is, the first test suite is

an example where our approach can lead to savings, while the

second test suite is an example of a pitfall, where our approach

can be more expensive than traditional analysis.



Fig. 2: The Triangle program

1 def triangle(a, b, c):

◮ assert a + b > c and a + c > b and b + c > a

3 if a = b and b = c:

4 ⊲ return ’Equilateral’

5 if a = b:

6 ⊲ return ’Isosceles’

7 if b = c:

8 ⊲ return ’Isosceles’

9 if a = c:

10 ⊲ return "Isosceles"

11 ⊲ return "Scalene"

Fig. 3: The Triangle supermutant

1 def triangle(a, b, c):

assert a + b > c and a + c > b and b + c > a

3 if a = b and b = c:

4 pass

5 if a = b:

6 pass

if b = c:

8 pass

if a = c:

10 pass

pass

Fig. 4: ⊥ indicates an assertion failure is expected, ⊤ indicates no assertion failure, and ⊢ indicates that an assertion is true

Fig. 5: Test Suite 2 (weak oracle)

1 def testsuite():

⊥ triangle(0,1,1)

3 ⊤ triangle(1,1,1)

4 ⊤ triangle(2,1,2)

5 ⊤ triangle(2,2,1)

6 ⊤ triangle(1,2,2)

7 ⊤ triangle(3,4,5)

Fig. 6: Test Suite 1 (strong oracle)

1 def testsuite():

⊥ triangle(0,1,1)

3 ⊢ triangle(1,1,1) = ’Equilateral’

4 ⊢ triangle(2,1,2) = ’Isosceles’

5 ⊢ triangle(2,2,1) = ’Isosceles’

6 ⊢ triangle(1,2,2) = ’Isosceles’

7 ⊢ triangle(3,4,5) = ’Scalene’

(a)17

(b1)8 (b2)9

(c1)4 (c2)4 (c3)4 (c4)5

(d1)2 (d2)2 (d3)2
(d4)2 (d5)2

(d6)3

(e1)1 (e2)1
(e3)1 (e4)1 (e5)1

(e6)1

(e7)1 (e8)1

(f1)1

(f2)1

1,000

1,000

1,000
1,000 407

407

358
358 1,000

1,000

407
407

358
358 1,000

1,000 358

358

49
49

49 49

Fig. 7: Evaluation of supermutants. Each node represents a

supermutant. The node values indicate number of mutations in

each. The shaded nodes mark non-detected mutants. The edge

labels show the number of tests that detected the supermutant

and hence transmitted to children. The doubled border

indicates first order mutants that were detected.

B. Analyzing the urlparse program

The urlparse API is a part of the Python standard library8.

It contains 37 statements that can be mutated (We manually

confirmed that the 37 mutants were non-equivalent) and are

covered by our test suite. The mutant kill matrix contains

1, 000 × 37 = 37, 000 test case evaluations. This can be

reduced to 25,260 test case evaluations using techniques such

as coverage based test-case selection.

The API urlparse accepts different kinds of URLs, parses

these and breaks them into their components. We used an

automatic grammar based fuzzer for generating input URLs

and used two test suites of varying strengths. The first test suite

had the strongest oracle. This oracle verified that the result of

unparsing the parsed URL matches the input URL. Using this

test suite, the maximum coverage we obtained was 32% with

1,000 test inputs. On delta debugging the test suite, we found

that a coverage of 32% could be obtained by just 4 test inputs.

Using these 4 inputs and using traditional mutation analysis,

we removed 20 trivially killed mutants where reachability was

sufficient for detection. This required 37 mutant executions

with one of the 4 different test cases. We verified that any

reachable test case would be able to detect these mutants

by checking that these mutants would be detected even after

removing assertions from test cases. We next constructed a

supermutant with the remaining 17 mutants. We evaluated our

test cases against this supermutant, and passed the detecting

test cases to the resulting child supermutants. Here, out of the

8https://docs.python.org/3/library/urllib.parse.html

https://docs.python.org/3/library/urllib.parse.html


17 mutations, 5 could be detected by supermutant analysis,

and the remaining 12 could not be detected either as a single

supermutant or individually by our test suite. This resulted in

a total of 13,009 test evaluations. This compares to 25,260 test

case evaluations for traditional analysis. The details are given

in Figure 7. The mutation score was 25

37
= 67.6%.

For the next cycle, we weakened our oracle. Rather than

verifying that the unparsed output object exactly matched the

input URL, we only verified that the return was a valid object

(not None). Using this oracle, only one of the 5 mutants

we previously detected could be found, and the supermutant

containing all remaining mutations could not be detected by

the test suite either. This resulted in a total of 9, 037 test

case evaluations compared to 25,260. The mutation score was
21

37
= 56.8%.

III. DISCUSSION

As we showed in the two case studies, using the supermutant

technique has the potential to reduce the computational

overhead for evaluating the complete mutant kill matrix. A

simple adaptation that we described in Section I can also make

it effective for traditional mutation analysis.

The applicability of our technique is dependent on the

following factors.

A. Strength of the test suite

The main requirement for applicability of the technique is

that the generated test suites are strong (coverage adequate),

but with weak oracles. We note that most machine generated

test suites [11] tend to belong to this category. Our technique

works best if individual test cases cover numerous mutants so

that a number of these mutants can be evaluated in a single

supermutant.

This is the main limitation of our approach. That is, it is

applicable only to a specific type of test suite (either machine

generated or containing weak oracles such that most mutants

are not detected immediately). A second problem is that we

assume that if a test case without assertion is able to detect

the mutants it covers, then any other test case that covers them

will also detect them (or other cheap means of classification).

However, this may not hold for all test cases.

B. Strength of the mutant

Our technique works best with mutants that are stubborn or

for evaluating possibly equivalent mutants. The reason is that,

for these mutants, traditional mutation analysis has to evaluate

the full matrix (n× t), when compared to trivial mutants where

the detection may happen with the first covering test case

(n × 1). Note that the statement deletion mutation operator

that we have used in Section II-A and Section II-B requires

smaller number of test cases [7], and hence easier to detect

(and results in a smaller number of equivalent mutants) than

other mutation operators. Hence our approach works with even

relatively easier to detect mutants.

Indeed, we suggest that any mutant likely to be hard to

detect or equivalent be marked, and evaluated exclusively with

our algorithm rather than even checking whether they can

be detectd by a simple covering test suite. Given that it is

comparatively easy to classify mutants as weak or strong once

reachability is taken into account [33] we believe that our

approach will prove useful in reducing the cost of execution.

C. Overlapping mutations

A third limitation of our approach is that only non-

overlapping mutations can be evaluated in a single supermutant.

However, one can evaluate multiple supermutants each contain-

ing different non-overlapping mutations to work around this

issue.

D. Effect of fault masking

The final limitation of our approach is that in the case of weak

oracles that rely on exceptions, fault masking starts to become a

problem. This can be illustrated by considering a weak oracle

for urlparse that only checks for exceptions and assertion

failures. Because urlparse relies on other procedures to perform

actual work, replacing these procedure calls by pass removes

any chance of exceptions, and hence mask the supermutants in

these procedures. This is in some sense predicted by previous

research [9] which suggests that fault masking is dependent on

the co-domain of a function. In the case of a weak oracle that

is unable to distinguish anything further than two cases of a

function behavior– exception and no exception, the co-domain

is essentially binary, and chances of fault masking increase

correspondingly. Again, another observation from urlparse is

that, if there are opportunities for incorrect parsing without

throwing exceptions, these too can potentially produce masking

supermutants when using weak oracles. These are problems that

need to be solved before mutation analysis using supermutants

can be practical.

IV. THREATS TO VALIDITY

Our evaluation is subject to the following threats:

• Our case study was conducted on two simple programs

triangle, and the urlparse the results from which are

indicative of the potential of our technique, but are not

representative of the real world.

• We rely on the rarity of fault masking from theory of

composite faults to avoid redundant computation. While

the theory has sufficient empirical evidence, it is possible

that specific programs may have different characteristics.

• We assume that mutants that are not killed by a covering

test case are likely hard to be killed. However, this

assumption has not been empirically evaluated.

• We use a covering test-suite with weak oracle (without

assertions) to eliminate trivial mutants. Here we assume

that a mutant killed by a covering test case without

assertions will be killed by any test case that covers it.

However, this assumption may not be correct in every

instance.

• We assume that supermutants especially when numerous

mutants are applied are likely easier to kill, and effects of



fault masking is negligible in such cases. However, this

assumption may not be correct in all cases.

• Some of the mutation patterns such as those that affect the

control flow can lead to some spurious mutant kill matrix

results. For example, a special optimization branch could

be rendered non-executable by a mutation, which may

likely make other test cases that test the correctness of

the optimization also fail to detect the supermutant, while

detecting the component mutations on the optimization.

V. RELATED WORK

The idea of mutation analysis was proposed by Lipton [19]

and its concepts formalized by DeMillo et al. [8], , and was

first implemented by Budd [4]. Previous research [5], [21],

[29] suggests that it subsumes different test coverage measures,

including statement, branch, and all-defs dataflow coverage.

Research shows that mutants are similar to real faults in terms

of error trace produced [6], the ease of detection [2], [3], and

effectiveness [16]. The foundational assumptions of mutation

analysis—“the competent programmer hypothesis” and “the

coupling effect”—have been validated both theoretically [9],

[34], [35] and empirically [25], [26].

Researchers have suggested several approaches to reducing

the cost of mutation analysis, which were categorized as do

smarter, do faster, and do fewer by Offutt et al. [28]. The

do smarter approaches include space-time trade-offs, weak

mutation analysis, and parallelization of mutation analysis, and

do faster approaches include mutant schema generation, code

patching, and other methods to make the mutation analysis

faster as a whole. Finally, the do fewer approaches try to

reduce the number of mutants examined, and include selective

mutation and mutant sampling.

While a number of researchers have investigated redundant

mutants [17] and have used the complete mutant kill matrix for

their research [1], [10], [24], we are unaware of any previous

research that targets mutant kill matrix computation specifically.

A. Higher-order mutants

An important and related area of research is that of higher-

order mutants [14], [15], [23]. The key idea here is that of

subsuming higher order mutants, which are mutants that are

harder to kill than their constituent mutants. These are mutants

where there is at least a partial masking of effect of the first

mutant by the second mutant. While such mutants are rare [9],

they are important for the simple reason that these mutants

represent the hard to find bugs that tend to interact, and hence

represent a different class of bugs. While this research also

investigates higher-order mutants, we rely on the rarity of

subsuming mutants for ensuring that generated higher order

mutants are easier to detect than its component mutants.

The mutant schemata approach [32] embeds multiple mutants

in the same source file, and chooses the mutant to evaluate

using global switches. Wang et al. [36] and Gopinath et

al. [12] suggest removing execution redundancy between

different mutants and hence making the mutation analysis

faster. Papadakis et al. [30] also combines multiple mutants

but for performing weak mutation.

VI. FUTURE RESEARCH

Numerous modifications to our algorithm may be investigated

for further improvements. We detail some of these below.

A. Partitioning strategy

While generating the supermutants, the question of how

to partition a supermutant into two child mutants can have

different answers. The simplest method is to randomly choose

which mutations end up in each child. If one is interested in

avoiding fault interaction, a plausible partitioning strategy is

to choose mutants that are far apart, and unlikely to influence

each other as possible within the same supermutant. If on the

other hand, our focus is on generating stronger higher order

mutants, or avoiding equivalent mutants, it may be better to

partition the set of mutations by natural boundaries such as

function, class, module etc. such that there is a better chance

of interaction between mutations.

B. Order of execution

Currently, we generate a supermutant, and identify all the

test cases that cover it. Instead, one could envision a tests-

first approach where one identifies a particular test case, and

identify all mutations that can be applied to the program

elements covered by that test case. Depending on whether

one is interested in mutant kill matrix or traditional mutation

score, one can decide to eliminate the killed mutants from

further consideration. It is as yet unclear whether this approach

can yield better performance as compared to the approach

considered in this paper.

C. Identifying probable fault masking patterns

One of the limitations with the supermutant approach is

that of fault masking, especially for test suites with weak

oracles. We identified that one of the recurring patterns was

that of method calls that can be removed without producing

an exception, and hence mask any exceptions that may be

thrown from within the procedure call. Another pattern is

that of optimization branches, where some optimization that

does not affect the correctness of results is performed for

specific kinds of inputs. Say a mutation changes the control

flow such that the optimization branch is never taken. In such a

case, a supermutant that contains mutations in the optimization

branch will never be detected by test cases that check for

the correctness of optimization even though the individual

mutations can be detected separately. These may not be the

only patterns, and a further empirical study using real world

programs is necessary to identify the fault masking patterns

that are likely to occur.

VII. CONCLUSIONS

Mutation analysis is used to accurately evaluate the quality

of software test suites. Unfortunately, traditional mutation

analysis is computationally intensive, requiring as many test

suite evaluations to complete as there are possible mutations in



the software, which often makes it impractical. The problem of

heavy computational footprint is aggravated when one wishes

to find the mutant kill matrix where the results of all test

cases against all mutants are required, especially for evaluating

redundancy in the mutants generated.

We propose a novel means of reducing the resource require-

ments of mutation analysis by combining multiple mutants into

supermutants and evaluating them together. Our approach has

the potential to reduce the resource requirements of mutation

analysis especially for test suites with weak oracles — in

particular machine generated test suites — where traditional

mutation analysis is most expensive (because each mutant likely

needs to be evaluated by each test case). Our approach can

also yield strong higher order mutants that can improve the

effectiveness of mutation analysis.

REFERENCES

[1] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in International Conference on Software Testing,

Verification and Validation. Washington, DC, USA: IEEE Computer
Society, 2014, pp. 21–30.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in International Conference on Software

Engineering. IEEE, 2005, pp. 402–411.
[3] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using

mutation analysis for assessing and comparing testing coverage criteria,”
IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 608–624,
2006.

[4] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Theoretical
and empirical studies on using program mutation to test the functional
correctness of programs,” in ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. ACM, 1980, pp. 220–233.
[5] T. A. Budd, “Mutation analysis of program test data,” Ph.D. dissertation,

Yale University, New Haven, CT, USA, 1980.
[6] M. Daran and P. Thévenod-Fosse, “Software error analysis: A real

case study involving real faults and mutations,” in ACM SIGSOFT

International Symposium on Software Testing and Analysis. ACM,
1996, pp. 158–171.

[7] M. E. Delamaro, L. Deng, N. Li, V. Durelli, and J. Offutt, “Experimental
evaluation of sdl and one-op mutation for c,” in International Conference

on Software Testing, Verification and Validation, Cleveland, Ohio, USA,
2014.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[9] R. Gopinath, , C. Jensen, and A. Groce, “The theory of composite
faults,” in International Conference on Software Testing, Verification and

Validation. IEEE, 2017.
[10] R. Gopinath, A. Alipour, A. Iftekhar, C. Jensen, and A. Groce, “Measuring

effectiveness of mutant sets,” in Workshop on Mutation Analysis. IEEE,
2016.

[11] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation
by developers,” in International Conference on Software Engineering.
IEEE, 2014.

[12] ——, “Topsy-turvy: A smarter and faster parallelization of mutation
analysis,” in International Conference on Software Engineering. New
York, NY, USA: ACM, 2016, pp. 740–743.

[13] C. Iida and S. Takada, “Reducing mutants with mutant killable precondi-
tion,” in International Conference on Software Testing, Verification and

Validation Workshops, March 2017, pp. 128–133.
[14] Y. Jia and M. Harman, “Constructing subtle faults using higher order

mutation testing,” in IEEE International Working Conference on Source

Code Analysis and Manipulation. IEEE, 2008, pp. 249–258.
[15] ——, “Higher order mutation testing,” Information and Software Tech-

nology, vol. 51, no. 10, pp. 1379–1393, Oct. 2009.
[16] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,

“Are mutants a valid substitute for real faults in software testing?” in
ACM SIGSOFT Symposium on The Foundations of Software Engineering.
Hong Kong, China: ACM, 2014, pp. 654–665.

[17] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Do redundant
mutants affect the effectiveness and efficiency of mutation analysis?” in
International Conference on Software Testing, Verification and Validation.
IEEE, 2012, pp. 720–725.

[18] B. Lindstrom and M. Marki, “On strong mutation and subsuming
mutants,” in International Conference on Software Testing, Verification

and Validation Workshops. IEEE, 2016, pp. 112–121.
[19] R. J. Lipton, “Fault diagnosis of computer programs,” Carnegie Mellon

Univ., Tech. Rep., 1971.
[20] Y.-S. Ma and S.-W. Kim, “Mutation testing cost reduction by clustering

overlapped mutants,” J. Syst. Softw., vol. 115, no. C, pp. 18–30, May
2016.

[21] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow
and mutation-based test adequacy criteria,” Software Testing, Verification

and Reliability, vol. 4, no. 1, pp. 9–31, 1994.
[22] G. J. Myers, “The art of software testing,” A Willy-Interscience Pub,

1979.
[23] Q. V. Nguyen and L. Madeyski, “Problems of mutation testing and

higher order mutation testing,” in Advanced Computational Methods for

Knowledge Engineering. Springer, 2014, pp. 157–172.
[24] R. Niedermayr, E. Juergens, and S. Wagner, “Will my tests tell me if

i break this code?” in International Workshop on Continuous Software

Evolution and Delivery. New York, NY, USA: ACM, 2016, pp. 23–29.
[25] A. J. Offutt, “The Coupling Effect : Fact or Fiction?” ACM SIGSOFT

Software Engineering Notes, vol. 14, no. 8, pp. 131–140, Nov. 1989.
[26] ——, “Investigations of the software testing coupling effect,” ACM

Transactions on Software Engineering and Methodology, vol. 1, no. 1,
pp. 5–20, 1992.

[27] A. J. Offutt and S. D. Lee, “An empirical evaluation of weak mutation,”
IEEE Transactions on Software Engineering, vol. 20, no. 5, pp. 337–344,
1994.

[28] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,”
in Mutation testing for the new century. Springer, 2001, pp. 34–44.

[29] A. J. Offutt and J. M. Voas, “Subsumption of condition coverage
techniques by mutation testing,” Technical Report ISSE-TR-96-01, Infor-
mation and Software Systems Engineering, George Mason University,
Tech. Rep., 1996.

[30] M. Papadakis and N. Malevris, “Automatically performing weak mutation
with the aid of symbolic execution, concolic testing and search-based
testing,” Software Quality Journal, vol. 19, no. 4, pp. 691–723, Dec.
2011.

[31] D. Shin and D. Bae, “A theoretical framework for understanding mutation-
based testing methods,” in International Conference on Software Testing,

Verification and Validation, 2016, pp. 299–308.
[32] R. H. Untch, J. Offutt, and M. J. Harrold, “Mutation analysis using mutant

schemata,” ACM SIGSOFT Software Engineering Notes, pp. 71:1–71:4,
1998.

[33] W. Visser, “What makes killing a mutant hard,” in IEEE/ACM Automated

Software Engineering. ACM, 2016, pp. 39–44.
[34] K. S. H. T. Wah, “A theoretical study of fault coupling,” Software Testing,

Verification and Reliability, vol. 10, no. 1, pp. 3–45, 2000.
[35] ——, “An analysis of the coupling effect I: single test data,” Science of

Computer Programming, vol. 48, no. 2, pp. 119–161, 2003.
[36] B. Wang, Y. Xiong, Y. Shi, L. Zhang, and D. Hao, “Faster mutation

analysis via equivalence modulo states,” in ACM SIGSOFT International

Symposium on Software Testing and Analysis. New York, NY, USA:
ACM, 2017, pp. 295–306.

[37] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” International

Conference on Software Engineering, pp. 919–930, 2014.
[38] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing

input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183–200, 2002.


