
Systematic Assessment of Fuzzers using Mutation Analysis

Philipp Görz1, Björn Mathis1, Keno Hassler1, Emre Güler2,
Thorsten Holz1, Andreas Zeller1, and Rahul Gopinath3

1CISPA Helmholtz Center for Information Security, Germany
2Ruhr University Bochum, Germany

3University of Sydney, Australia

Abstract
Fuzzing is an important method to discover vulnerabilities
in programs. Despite considerable progress in this area in
the past years, measuring and comparing the effectiveness of
fuzzers is still an open research question. In software testing,
the gold standard for evaluating test quality is mutation anal-
ysis, which evaluates a test’s ability to detect synthetic bugs:
If a set of tests fails to detect such mutations, it is expected to
also fail to detect real bugs. Mutation analysis subsumes vari-
ous coverage measures and provides a large and diverse set
of faults that can be arbitrarily hard to trigger and detect, thus
preventing the problems of saturation and overfitting. Unfor-
tunately, the cost of traditional mutation analysis is exorbitant
for fuzzing, as mutations need independent evaluation.

In this paper, we apply modern mutation analysis tech-
niques that pool multiple mutations and allow us—for the
first time—to evaluate and compare fuzzers with mutation
analysis. We introduce an evaluation bench for fuzzers and
apply it to a number of popular fuzzers and subjects. In a
comprehensive evaluation, we show how we can use it to as-
sess fuzzer performance and measure the impact of improved
techniques. The required CPU time remains manageable:
4.09 CPU years are needed to analyze a fuzzer on seven sub-
jects and a total of 141,278 mutations. We find that today’s
fuzzers can detect only a small percentage of mutations, which
should be seen as a challenge for future research—notably in
improving (1) detecting failures beyond generic crashes and
(2) triggering mutations (and thus faults).

1 Introduction

Fuzzing is the key method to test the robustness of programs
against malformed inputs. Since it reveals inputs that crash or
hang programs, and as these failures can often be turned into
actual exploits, fuzzing is also the prime method to discover
security vulnerabilities. However, fuzzing is computationally
expensive. Hence, researchers and practitioners must be able
to determine which fuzzing tools and techniques are the most

effective. In a recent survey, 63% of fuzzing practitioners [1]
named measures for fuzzer comparison as one of the top three
challenges that need to be solved.

Testing techniques, including fuzzers, are often assessed by
obtained code coverage [2]. Code coverage refers to the num-
ber of program elements that were exercised by the fuzzer (we
treat code coverage in detail in Section 2). This is reasonable
because in order to find a bug at some location, the test must
cover this very location in the first place. But code coverage
alone is not sufficient to actually find bugs. Coverage on its
own cannot evaluate the quality of sanitizers (used as bug ora-
cles in fuzzing) or fuzzers set up to produce inputs specifically
crafted to induce bugs [3, 4]. Furthermore, there is only a
moderate association between bugs and coverage when using
test generators: Previous research shows a correlation coef-
ficient R2 = 0.72 between Randoop generated test cases and
mutation score [5]. Another alternative to evaluate fuzzers is
to run them on a benchmark of programs with known faults
and compare fuzzers by bugs found [2, 6, 7]. A general con-
cern with such approaches is that the distribution of available
faults may not be uniform or related to the actual possible
fault distribution in the program [8]. Furthermore, when the
faults are known in advance, we run the risk of fuzzer parame-
ters or even the technique itself being fine-tuned to find these
faults [9, 10, 11, 1].

In software testing, the technique of mutation analysis has
established itself as the gold standard to evaluate tests and
test generators [12]. In mutation analysis, synthetic faults
(mutations) are injected into the program code by creating
random variations (so-called mutants). The assumption is
that a test set should be able to detect (“kill”) these mutations,
just as it should be able to detect real faults. As an example,
Listing 1 shows a number of possible mutations for a C code
fragment. We see that mutations such as changing the type
of a variable (①) or manipulating a comparison (②, ③) may
all impact the ability of a program to handle invalid inputs.
A good test set should be able to trigger these faults; and the
more mutants a test set detects (“kills”), the higher its quality.



1 ① unsigned int len = message_length(msg);
2 if (len ② < >= MAX_BUF_LEN ③ + 16) {
3 copy_message(msg);
4 } else {
5 // Invalid length, handle error
6 }

Listing 1: Mutations in C code. Mutation ① deletes unsigned;
mutation ② replaces < with >=; mutation ③ adds +16.

In contrast to coverage metrics, mutation analysis also as-
sesses the ability of the tests to detect the (injected) faults.
Indeed, a test can have 100% coverage, but if it does not
check any computation result, it will fail to detect errors. In a
fuzzing context, mutation analysis thus also assesses whether
the fuzzer can detect issues beyond generic errors. And in
contrast to curated faults, tests cannot overfit, as the actual
mutations being applied are many, diverse, and randomly dis-
tributed. This lack of bias in mutations (i.e., anything can
happen, anywhere) is often touted as a big advantage of muta-
tion analysis. However, while it may be tempting to model
mutants after past fixes [13, 6], this biases test assessment
towards past issues, which in turn puts less weight on the
ability of tests to find yet unknown issues. (We are not aware
how the Heartbleed [14], “goto fail;” [15], or log4shell [16]
vulnerabilities could have been predicted from past issues.)

Several studies have confirmed the correlation between the
ability to detect (mostly simple) mutations and the ability to
detect (possibly complex) real faults [17, 18, 19]; and several
works have explored how mutation analysis can be applied
to security testing [20, 21, 22, 23, 24, 25]. Yet, mutation test-
ing has a significant drawback: It is expensive. Every single
mutation induces a code change that needs to be evaluated
by an entire run of all tests to assess whether they detect the
mutation—and this must be done for thousands of mutations.
Multiplied with the dynamic tests produced by fuzzers, this
makes mutation analysis prohibitively expensive for evaluat-
ing fuzzers. Furthermore, fuzzers can react to faults [4, 3,
26], limiting traditional avenues for optimizations in muta-
tion analysis that assume static test suites. Recent advances
in mutation analysis, however, can significantly reduce this
complexity. Notably, the concept of a supermutant [27] en-
ables us to evaluate multiple mutants together in a single test
run. The idea is to group together mutations that are unlikely
to interact and fuzz them in parallel. Also, we can proceed
in multiple phases, first having the fuzzer quickly achieve
maximum coverage, producing a seed corpus for the next
phase. This seed corpus is then used as a static test suite to
kill trivial mutants, leaving the few remaining (“stubborn”)
ones as potential fuzzing targets.

In this paper, we show that such optimizations actually
allow us to apply full mutation analysis to evaluate and com-
pare fuzzers at scale, using a myriad of unbiased mutations
that assess the ability of a fuzzer to find any kind of bugs,

including, but not limited to, software vulnerabilities. Our
approach is implemented and available as a large-scale eval-
uation bench for fuzzers. We demonstrate the usefulness of
the evaluation bench by applying it on a number of popu-
lar fuzzers (AFL, AFL++, libFuzzer, and Honggfuzz) and
test subjects (cares, vorbis, woff2_new, libevent, guetzli,
re2, and curl). We show that it is possible to conduct a full-
scale evaluation and comparison of these fuzzers using 16.36
CPU years of computation time, just under a month with our
available hardware—a nontrivial, yet affordable amount of
resources and a first step toward making mutation analysis a
feasible solution for comparing fuzzers. To the best of our
knowledge, the present work thus

• is the first study to apply mutation analysis to fuzzers,
using traditional mutation operators as well as operators
from a security context (a total of 31 operators);

• identifies the limitations of traditional mutation analysis
optimizations when used for fuzzer comparison;

• develops novel optimization strategies for mutation anal-
ysis when mutation analysis is used for fuzzer compari-
son (we show that these optimizations can make muta-
tion analysis usable for fuzzer comparison);

• demonstrates that fuzzers indeed differ in their ability to
detect mutations, and consequently, faults;

• shows that improvements in failure detection—notably
the use of sanitizers—result in a better mutation detec-
tion.

These results demonstrate that our evaluation bench can be
used to compare fuzzer performance and evaluate improve-
ments of different tools.

In our study, we also found that only a small percentage
of mutants is detected by at least one of the fuzzers. The
best fuzzer in our evaluation, AFL++, covers 30.9% of all
mutations and detects 28.3% of these covered mutants—that
is, 8.8% of all mutations. These numbers may seem low on
an absolute scale. However, note that mutation analysis pro-
duces shallow mutants that are easy to find, but also deep
mutants that are very hard to trigger, as well as subtle mutants
whose effects can be hard to detect. There even are mutants
that, although altering the syntax of code or output, leave their
semantics untouched, and hence cannot be detected by any
approach in the first place. While a mutation detection rate of
100% is thus unlikely to ever be achieved, the detection rate
is very useful as a relative measure to compare approaches
and measure progress. In our study, for instance, using an en-
hanced oracle such as Address Sanitizer (ASAN) [28] results
in a moderate improvement in detection to 34.2% of covered
mutants (9.1% of total mutants).

We find that our results reveal important directions for
research in fuzzing:

• First, fuzzers can profit from better oracles—that is, pred-
icates that check for the presence of failures. Right now,
fuzzers that use generic oracles, such as crashes or hangs,
are quite limited because not every vulnerability (and



not every mutation) manifests itself this way. Our man-
ual analysis shows that out of the mutants that were not
detected, few could have been found by a crash oracle,
see Section 5.2.1. However, a majority of these mutants
would still produce a behavioral divergence from the
original program and hence can represent a vulnerability
in a security context.

• Second, fuzzers can profit from more targeted intelli-
gence—that is, generating inputs based on possible bug
locations. Out of all mutants killed by AFL++ (28.3%
of covered mutants), 94.4% were found with inputs gen-
erated on an unmutated binary. That is, at most 5.6% of
the mutants were killed because of targeted intelligence
such as crafted inputs [3] or directing fuzzers towards
potential problems [4, 26]. This is significant because,
according to an analysis of our syntactic fault patterns,
we find that 71 of 100 recent CVEs were coupled to
a mutation. Hence, fuzzers could significantly benefit
from better targeting.

In summary, mutation analysis provides ambitious and
unbiased goals for fuzzing and testing that are not suscep-
tible to saturation or potential overfitting—and thus pose
great challenges for future research. Our optimizations of
mutation analysis, as introduced in this paper, provide re-
searchers and practitioners with the means to determine
whether and which fuzzers meet these challenges. Our evalu-
ation bench is available at https://anonymous.4open.science/
r/mutations-comparing-fuzzers-E73D/ to help assess future
progress in the field.

2 Technical Background

We use the IEEE 1044 [29] nomenclature: A fault is a code
artifact causing a failure. A failure (aka bug) is an incorrect
program behavior. An error is a human action that led to the
fault. An error model defines the kinds of faults expected.

Given a limited computing budget, a fuzzing practitioner
needs to choose a fuzzer that is most likely to find the most
bugs, which is typically accomplished using coverage criteria
or a set of curated bugs [8], which we discuss next.

2.1 Coverage Criteria for Fuzzer Comparison
Coverage, or code coverage, refers to the number of program
elements in the program under test (PUT) that were exercised
by the input or set of inputs. Some program elements typically
considered are statements, basic blocks, branches, and unique
acyclic paths through the program. The idea is that code
coverage provides an indication of the amount of program
code that was explored.

Numerous coverage criteria exist [5] that can be used for
judging the effectiveness of test suites and test generators,
such as fuzzers. Most feedback-driven fuzzers, such as AFL,
use some form of code coverage for guidance. Hence, code

coverage achieved in target programs can be seen as a rea-
sonable criterion for comparing fuzzers. The main problem
with using code coverage, however, is that it is insufficient on
its own for evaluating fuzzers. In particular, code coverage
is unable to judge the quality of oracles such as sanitizers.
They make bugs detectable (e.g., ASAN detects many kinds
of memory handling errors), which is critical to ensure effec-
tive fuzzing. Another limitation is coverage saturation. That
is, once a program element is saturated, there is little extra
information available [30]. Many fuzzers [4, 31, 3] include
intelligence to craft inputs (e.g., calling an API with invalid
values), which, while important, is invisible if coverage is
used for fuzzer comparison.

2.2 Benchmarks Using Curated Faults
Fuzzers can be evaluated using curated fault benchmarks [2,
32, 7, 33]. However, such benchmarks are inherently limited
to known faults. As specific benchmarks are used to measure
the effectiveness of a technique, the published improvements
in the technique can become influenced by the benchmark
in non-obvious ways. For example, if faults are mined from
existing ones, the result might be numerous faults or types of
faults that are easy to detect. Further, if a given tool (such as
AFL) was used to find and eliminate faults during develop-
ment, these faults are no longer in the set mined from released
versions—which does not mean that the effectiveness of the
tool has reduced. For example, exchanging AFL for another
tool that does well on such mined faults (but not necessarily
on the faults already removed during development) may not
produce the improvement a practitioner was hoping for.

That is, both bug-based and coverage-based techniques
have inherent limitations. Next, we discuss how mutation
analysis can overcome these.

2.3 Mutation Analysis
Mutation analysis is a key technique for evaluating the fault-
revealing power of test suites on a given program. It is the
premier method of test suite evaluation in both the indus-
try [34, 35, 36] and the research community [12]. It is a
white-box technique that can be used to evaluate test suites
when the source code of the program under test is available.

For mutation analysis, we start with the following error
model: Any token in a program is a possible location for a
fault to exist, and faults are likely caused during transcrip-
tion of the concept in the developer’s mind to the code arti-
fact. Further, we assume that the developer uses automatic
tools such as compilers, which removes some categories of
faults. This gives us a way to generate possible faults with
minimal human bias1: Generate all instances of a fault type

1There remains an unavoidable human bias due to the selection of fault
types. However, generating instances of a fault type avoids bias as it is done
exhaustively.

https://anonymous.4open.science/r/mutations-comparing-fuzzers-E73D/
https://anonymous.4open.science/r/mutations-comparing-fuzzers-E73D/


We define the following mutation related terms that
we use throughout this paper:

Mutation. A small syntactic change that can be in-
duced in the program.

Mutation operator. Transformation pattern that de-
scribes how mutations are induced in the program. A
mutation operator, when applied to a matching loca-
tion in the program, will produce a mutant.

Mutant. A new program that contains differences
(mutations) from the original. A first order mutant con-
tains only a single mutation. A higher order mutant
contains multiple mutations. A supermutant contains
all possible mutations that can be applied at once.

Trivial mutants. Mutants that can be killed without
targeted intelligence. That is, any input whose execu-
tion covers their location will kill them.

Stubborn mutants. Mutants that remain alive even
after coverage reached their mutation locations.

Intelligent mutants. Mutants killed by fuzzers on in-
dividual evaluation (i.e., they are not killed simply by
covering their location).

Equivalent mutants. An equivalent mutant is a mu-
tant that, while different from the original program
syntactically, has the same semantics.

Mutant kill matrix. A mutant kill matrix (and sim-
ilarly mutant coverage matrix) is a matrix with test
cases as columns and mutants as rows. A mutant that
is killed by a test case is assigned 1 in the relevant cell
(else 0) [37].

Minimal test suite. A minimal test suite with respect
to a given set of mutants and a given test suite con-
taining simple test inputs is the smallest subset of test
inputs that is required to kill the exact same mutants
as the given test suite [37].

Minimal mutant set. A minimal mutant set with re-
spect to a given set of mutants and a minimal test suite
is the smallest subset of mutants that is required to
maintain the minimal test suite [38].

for each source code element that will get past the compiler.
However, many faults in the real world can be complex, con-
taining multiple sub-faults. Modeling them with complex
faults containing multiple sub-faults can lead to a combina-
torial explosion, which can be avoided by depending on two
well-studied axioms—the finite neighborhood hypothesis and
the coupling effect. The finite neighborhood hypothesis (also

called competent-programmer hypothesis) states that faults, if
present in the program, are within a limited edit distance away
from the correct formulation [39]. The coupling effect claims
that simple faults are coupled to complex faults, such that
tests capable of detecting failures due to simple faults will,
with high probability, detect the failures due to complex faults.
Hence, the probability of fault masking is very low [40]. Both
axioms are well researched, with well-founded theory [41, 42,
43, 44], and confirmed in real-world software [45, 44, 46, 47].
With these two axioms, we can limit the faults we need to test.
This allows us to focus on changes to the smallest program
elements, such as tokens and statements, and still expect that
the created mutations are representative of real bugs.

Given this error model, the idea of mutation analysis is to
collect possible fault patterns (a single fault pattern is called
a mutation operator), identify possible faults in the program
(called mutations), generate corresponding faulty programs
(called mutants) each containing a single mutation, and finally
evaluate each mutant separately using each fuzzer and check
whether the fuzzer is able to detect the changed behavior of
the mutant (called killing the mutant).

In summary, we can use the huge body of work on mutation
analysis as an effective method to compare fuzzers by using
the number of mutants killed by each fuzzer as the criterion.

2.3.1 Computational Requirements

Cost is a major concern with mutation analysis, as each mutant
needs independent evaluation. Furthermore, for fuzzing, we
need to evaluate each produced input independently on each
mutant. We cannot tell if a mutant will be killed by an input
without executing the mutant on that input. Indeed, we cannot
even assume that the fuzzer will produce the same input on
both the original and the mutant because the fuzzer may detect
the mutation in the program and take steps to induce failure on
a perceived fault. That is, the number of program executions
effectively increases quadratically with program size.

There are several traditional optimizations to make muta-
tion analysis less costly. However, these techniques assume
static test suites, which makes them inapplicable to fuzzers.
For example, the most effective optimization is to find the
statements in the program that are covered by the specific
tests in the test suite, then only run tests against mutants they
cover (or that lead to a state infection [48]). This technique is
inapplicable to fuzzers because fuzzers are non-deterministic,
and the possibility of introspection on the source code for in-
put generation might result in different inputs for the original
and the mutant (violating the clean program assumption [47]).
The same problem affects usage of weak mutations [49], split
stream execution [50, 51], equivalence modulo states [52],
and function memoization [53]. Thus, these traditional opti-
mization techniques do not work well for fuzzers. We describe
in Section 3 how we still achieve a significant reduction of
computation time by using supermutants [27].



2.3.2 Residual Defects

One of the main reasons for using mutation analysis is that it
provides the best estimate for the number of residual defects.
The residual defects are defects that remain in a program
after testing is completed and all found defects have been
fixed [54, 55]. Undetected faults that mirror a mutation (a
single incorrect token) are accounted for with our approach,
as all mutations are applied to a program exhaustively. The
larger and more complex types of faults are also subsumed
by these mutations due to the coupling effect hypothesis (see
Section 2.3). That is, the number of mutants that remain
undetected tracks the number of residual defects closely and
can be considered a true ordinal measure [54, 56] of the
number of residual defects in a program.

We also note that the residual defect density can be esti-
mated from the number of mutants found using statistical es-
timation tools, such as population estimation [57] and species
richness estimation as suggested by Böhme [58].

2.3.3 Design of Mutation Operators

Mutations are typically modeled on human errors such as
exchanging a token in the source code for another or forgetting
to add a statement. Some traditional mutation operators are
carefully chosen so that a test suite capable of detecting the
resulting mutants also satisfies statement, branch [59], data-
flow [60, 61], and various logic criteria [62]. That is, the
test objective represented by a given criterion can be satisfied
by the detection of a subset of mutants [12]. In addition to
the traditional operators, operators that reflect known fault
patterns in specific domains [12] are also chosen.

2.3.4 Equivalent Mutants

One of the problems with traditional mutation analysis is
equivalent mutants. These are mutants that are semantically
the same as the original program. For example, in the follow-
ing fragment,

1 if (cache.has(key)) return cache.get(key);
2 return compute(key);

removing the cache check need not induce a failure. Previous
studies show that 10% to 23% of generated mutants could
be equivalent [63, 64], which can limit the usefulness of the
mutation score (the absolute number of mutants killed).

We do not expect equivalent mutants to be a concern (be-
yond computational expenditure) for the following reasons:
(1) In fuzzer comparison, only the relative mutant kills matter.
(2) We manually analyzed a random sample of 100 stubborn
mutants and found only 11 equivalent mutants. This is also in
line with the literature [63, 64]. Our analysis (in Section 5.2.1)
provides statistical confidence (89±6% CI at 99% CL) that
most of the generated mutants induced faults.

3 Approach

We now describe how to evaluate fuzzers using mutation
analysis with security-relevant mutations. This requires an-
swers to three questions: Which mutations to apply? How
to detect if they are found? And, how to reduce the required
computational effort?

3.1 Selecting Mutation Operators

As fuzzers are mainly used to detect security issues, we create
mutations that focus on generating vulnerable code to com-
pare different fuzzers. We started with the traditional mutation
operators representing common programming errors as the
baseline. Next, we went through the list of Common Weak-
ness Enumerations (CWEs) for C [65] and C++ [66], creating
mutations for interesting and feasible vulnerability types. Fi-
nally, we investigated recent CVEs for C and C++ projects
and added unrepresented mutations modeling vulnerabilities
that have been reported.

Our set of patterns can be grouped into seven types of
mutations: Compare patterns (for example, increasing the
right-hand side of a signed <= comparison), memory pat-
terns (modifying calls to allocation or de-allocation functions
to trigger out-of-bounds, double free, or use-after-free is-
sues), control flow patterns (deleting function calls or flipping
branch conditions), assignment patterns (deleting variable
assignments, changing comparisons into assignments, etc.),
library call patterns (e.g., provoking a failure to test if return
values are checked), synchronization patterns (removing lock-
ing operations or making atomics non-atomic), and arithmetic
patterns (for example, turning a signed variable unsigned).
The full list of currently supported mutation operators can be
found in Table 10 in the Appendix.

3.2 Detecting Mutations

Another essential component is the detection of true mutant
kills. To make this process robust against the possibility of
targeted manipulation, it must be performed in a manner that
makes it challenging for fuzzers to cheat. For instance, if we
classify a mutant as killed when the fuzzer reports a crash,
it would be trivial for a fuzzer to just report a crash in every
run. Similarly, we cannot base this decision on a version
of the subject that has been instrumented by a fuzzer, as the
fuzzer could itself introduce a crashing change during the
instrumentation process. Thus, to confirm any input that
a fuzzer reports as crashing, the input is rerun on the non-
instrumented version of the original as well as the mutant (see
Section 4 for a detailed description). A mutation is killed if
the original exits with a different exit code than the mutant
does. We require the original to exit without an error signal
to avoid the case that there is a crashing bug in the original.



3.3 Reducing Computational Requirements
We reduce the computational requirements by using two tech-
niques: Split Analysis and Supermutants.

Split Analysis The analysis of fuzzer performance is split
into two phases:

I. How much of the program is the fuzzer able to cover?

II. Does the fuzzer identify injected faults?

For Phase I, we are only interested in finding the maximum
obtainable coverage, and for that, we use the fuzzer under
test on the original program to generate a set of seed files that
cover as much of the program as possible (called coverage
seeds from now on). Since no known faults are present, the in-
centive for the fuzzer is purely to cover the maximum amount
of source code. Next, we use the coverage seeds as a static
test suite, where we can apply traditional mutation analysis
optimizations and quickly remove any mutants that are killed
by the coverage seed files. This allows us to eliminate trivial
mutants (those that only need coverage to crash), which are
a significant chunk of the total set of mutants, with limited
computational overhead.

In Phase II, we use the coverage seeds as the starting point
to fuzz the remaining stubborn mutants. This ensures that if
the fuzzer contains “intelligence” to recognize and target the
inserted fault, it can use that intelligence to find and kill the
mutation. This method accounts for fuzzers that go beyond
coverage and use advanced code analysis to guide fuzzing.

Supermutants. We use an approach based on supermu-
tants [27] to evaluate mutants with fewer computational re-
sources than traditional analysis. The basic idea is to identify
independent mutations and combine them into supermutants
to allow a sound evaluation of multiple mutations without
fault interactions for the compute cost of a single mutant.

We identify two mutations as independent if no seed input
covers both mutations during execution (for more context, see
Section 4). Depending on whether mutations were covered
in Phase I, we create supermutants as follows: Covered mu-
tations are combined into supermutants if they are mutually
independent. Non-covered mutations form supermutants by
randomly choosing 100 mutations. In both cases, a function
contains at most one mutation (due to a technical limitation
of our mutation engine).

If during Phase II, we find that a supermutant cannot be
killed, we mark all mutations in this supermutant as alive.
Otherwise, we identify the particular input or test case that
killed it. If more than one of the included mutants was cov-
ered, indicating a derivation from the initial identification, we
split up the supermutant and re-run the crashing input on the
resulting mutants. The fuzzing process is restarted for any
surviving mutants, which removes the possibility of multiple
mutations interfering with each other.

4 Implementation

Our chosen subjects are C and C++ projects to cover programs
that are affected by memory corruption vulnerabilities. We
implemented an LLVM pass to find mutation locations (mu-
tation finder) and another pass to do the actual code changes
(mutator). See Figure 1a for an overview of the compilation
process. The mutation finder identifies all mutation locations
and possible mutations and assigns an ID to each of them. It
also produces an executable (location executable) with log-
ging code in place of the actual mutation that can be used to
check which mutations are covered for a given input. One
comparison executable without any mutations is compiled
using the base compiler. Given mutation ID(s), the mutator
produces the corresponding supermutant bitcode file. The
bitcode file is then compiled with a base compiler to create a
mutated executable for comparison, and each fuzzer compiles
its own instrumented version. To decide which mutations can
be put together into one supermutant, we run all seed inputs
on the executable produced by the mutation finder.

To evaluate a mutation, we need to know if the mutation
has been covered and whether it has been killed. An overview
of this process is shown in Figure 1b. During fuzzing, we
check if a mutation is covered using the mutated executables.
To decide if a mutation has been killed, we rerun inputs that
a fuzzer reports as crashing on the unmutated and mutated
executables.

5 Evaluation

Our evaluation seeks to answer the central question: How
well can fuzzers be compared using Mutation Analysis? We
evaluate four research questions to study mutation analysis as
a comparative metric for fuzzer evaluation.

RQ1. How do different fuzzers compare in killing mutants?
The question has three parts: (1) what percentage of
mutants were killed in Phase I, (2) what percentage of
the remaining mutants were killed in Phase II, and (3)
how do the killed mutant sets intersect between different
fuzzers?

RQ2. How much can sanitizers improve the results? Inputs
generated by a fuzzer account for only a part of the
toolchain. Detecting bugs requires some kind of oracle,
ranging from simple crash feedback to more sophisti-
cated sanitizers. With this question we want to assess if
we can measure sanitizer influence.

RQ3. How many real vulnerabilities are coupled to muta-
tions? For mutation analysis to be useful, the mutations
it produces should be semantically coupled to some real
faults. That is, for any real fault, there should exist a
mutation such that detecting the mutation guarantees
detecting the real fault [45]. Hence, this question seeks



Mutator

Base
Compiler

Unmutated
Executable

Mutated
Executable

Fuzzer
Compiler

Subject
(bitcode file)

Instrumented
Mutated

Exectuable

Mutation
Finder

Location
Executable

Mutation
IDs

Mutation IDs
for a Supermutant

Result of
Subject

Result of
Supermutant

Supermutant
(bitcode file)

(a) The different executables created from a single subject.

Benchmark Manager

Crashing
Input

Mutation
killed?

Seeds Unmutated
Executable

Mutated
Executable

Fuzzer(s) Mutation
covered?

Instrumented
Mutated

Exectuable

1. Check if Seeds
(after Phase I)

already kill mutation(s)

4. Check if found
Crashing Input

kills Mutant

Run input to check that
crash does not happen

in unmutated executable

Run input to check if
crash can be confirmed

3. Fuzz using the fuzzer
respective executable

Run input to get
covered mutations

2. Use Seeds to start
Fuzzer (each Fuzzer is

initialized with
their respective seeds

after Phase I)

(b) Steps taken to evaluate mutations.

Figure 1: Schematic overview of the compilation and evaluation process.

Table 1: Overview of the subjects used for evaluation. LOC
as counted by cloc [68], taking the sum of C/C++ lines.

Subject Description Version LOC

cares_name DNS query creation 809d5e84 62,749
cares_parse_reply DNS reply parsing 809d5e84 62,749
woff2_new Font Format 4721483a 39,373
libevent Event Notification 5df3037d 56,881
guetzli JPEG Encoder 214f2bb4 8,029
re2 Regular Expressions 58141dc9 27,545
curl Data Transfer curl-7_83_1 151,413

to understand whether we have succeeded in capturing
the characteristics of real-world vulnerabilities with our
mutation operators.

5.1 Setup
We describe our experimental setup next.

Subjects. For our experiments, we looked for robust sub-
jects with no known faults. We selected OSS-Fuzz [67] sub-
jects (see Table 1) that were compilable with gllvm and do
not crash when fuzzed for 48 hours.

Fuzzers. We chose fuzzers that are general purpose, sup-
port in-process fuzzing, offer a compiler-wrapper and ASAN
support, resulting in AFL, AFL++, libFuzzer, and Honggfuzz
for evaluation (see Table 2). We follow generally recom-
mended flags and use forking mode for libFuzzer to avoid
early stopping. If dictionaries are available for subjects, they
are provided to the fuzzers.

Hardware. We used four servers providing an Intel Xeon
Gold 6230R CPU, each with 52 cores and 188 GB RAM. The
computation times for all experiments are shown in Table 3.

Table 2: Overview of the fuzzers used for evaluation. The
arguments under Dictionary are additionally provided if there
is a dictionary available.

Fuzzer Arguments Dictionary Version

AFL -d -x 2.57b
AFL++ -d -c cmplog -x 3.14c
Honggfuzz -n 1 --dict 2.4
libFuzzer -fork=1 -dict 11.1

Table 3: Actual computation times for all experiments. Ex-
periments were run on four servers, each with 52 cores. Note
that evaluating a single fuzzer takes 4.09 CPU years (“Seed
+ Default” / #Fuzzers) with our chosen subjects.

CPU (Years) 4 Servers (Days)

Seed Collection 1.99 3.50
Default 14.37 25.22
Seed + Default 16.36 28.72
ASAN 15.16 26.61
24 Hours Runs 7.42 13.02

Sum 38.95 68.34

Runtime. As the required CPU time is a central concern,
we employ two approaches to reduce the required CPU time,
which are described in Section 3.3. One is the application
of supermutants which, for our evaluation, results in a re-
duction of required runs by between 1.76× and 19.95× (a
mean reduction of 3.8×), as shown in Table 4. Note that this
ignores supermutants that are not independent—see Table 8
for details.

The other approach is splitting the benchmark into a cover-
age phase (I) and a fault-detection phase (II). A speedup is
achieved by using a long individual runtime for phase I (for



Table 4: Computational Reduction by Using Supermutants

Subject #Mutants #Supermutants Factor

curl 29,118 5,804 5.02
guetzli 22,961 13,040 1.76
woff2_new 40,914 5,930 6.90
cares_name 4,822 550 8.77
cares_parse_reply 4,822 1,288 3.74
libevent 17,234 864 19.95
re2 21,407 9,670 2.21

Sum 141,278 37,146 3.80

our evaluation, 13 repetitions of 48 hours each) to allow a
shorter runtime for phase II (1 hour per supermutant). The real
speedup is highly dependent on the chosen runtimes and can
be calculated by the following formula: M×R

RI×S+M×RII
; where

M is the number of supermutants, R is the normal runtime, RI
is the runtime of phase I, RII is the runtime of phase II, and S
is the number of repetitions for coverage seed gathering. For
our evaluation, this results in a speedup of 25×.

5.2 RQ1: How do different fuzzers compare?

Seed inputs are first created for each fuzzer and subject pair.
These are either extracted from subject repositories if avail-
able or created manually. Each fuzzer is run on the unmutated
base executable of the subject to fuzz for coverage for 48
hours (13 instances per fuzzer). The resulting inputs are then
minimized by the tools provided by the respective fuzzer. Of
the 13 instances for each fuzzer, the median run based on
covered mutations is selected as the coverage seed corpus.
The median run is used to avoid outliers in performance, as is
recommended by previous research [2].

Next, we create supermutants (Section 3.3) and evaluate
each on the coverage seeds from Phase I. In Phase II, each
fuzzer is run for an hour on each supermutant.

Results. The results of this experiment are provided in Ta-
ble 5. The column #Mutations represents the number of pro-
duced mutations. Fuzzer represents the used fuzzer. Phase I
Covered represents the number of mutations covered by the
seeds. Phase I Killed represents the number of mutations
killed by the seeds. Phase II Covered represents the number
of mutations that were covered in the Phase II beyond Phase I.
Phase II Killed represents the number of mutations that were
killed in Phase II beyond Phase I. Total Covered represents
the number of mutants that were covered in total, and Total
Killed represents the number of mutants that were killed in
total. Summing up all subjects, we see that AFL++ kills 8.8%
of all mutants, closely followed by Honggfuzz with 8.7% and
AFL with 8.4%. libFuzzer lags behind at only 7.5%. In terms
of covered mutations, AFL++ (30.9%) is again narrowly in

front of Honggfuzz (30.4%), followed after a large gap by
libFuzzer (25.9%) and AFL (24.6%). We find that coverage
alone accounts for most of the killed mutants. The ensemble
of all fuzzers in our evaluation (combined rows in Table 5)
gets 99.95% of its coverage and 97.5% of its kills in Phase I.
Indeed, none of the evaluated fuzzers employ bug-targeted
feedback instrumentation, hence, this is expected.

Coverage accounts for most mutants (97.5%) detected in
our evaluation.

We found two anomalous results regarding AFL: For
guetzli, the median run covers only around 7,000 muta-
tions, which is caused by wildly inconsistent runs covering
from 2,500 to 12,000 mutations, a disadvantage from which
AFL recovers surprisingly well in Phase II. Additionally, for
re2, AFL crashes for most mutations.

How do these fuzzers relate to each other? See Figure 3
for a Venn diagram of killed mutants per fuzzer. The fuzzers
have a large intersection of killed mutations (78.6%). Con-
sider AFL++: It finds 94.9% of all killed mutants. Adding a
second fuzzer provides only a marginal improvement: Hongg-
fuzz (+3.2%), AFL (+2.3%) or libFuzzer (+1.3%). For further
details, a comparison per mutation type is available in Fig-
ure 2.

Is an extra hour of fuzzing beyond 24 hours of fuzzing
for coverage sufficient for targeted fuzzing? To examine
this question, we sampled up to 104 (to keep a multiple of
CPU count) stubborn mutants for each subject and fuzzed
them for 24 hours on every fuzzer. Note that, as we do not
use supermutants for this experiment (i.e., we use only one
mutation per mutant), this also serves as a test if supermutants
introduce inconsistencies. As only three of the total of 690
mutants are killed, we believe that one hour runs are indeed
sufficient for Phase II. Additionally, we feel that this result
confirms our choice of using supermutants. The detailed
results can be found in Table 7.

5.2.1 Manual Analysis of Mutations

To assess whether mutations that we introduce result in a se-
mantic change, we manually examine 100 randomly selected
mutations that were not found during the 24-hour runs. Of
these, we identify 11 mutations as equivalent, 5 as potentially
leading to crashes, and the remaining 84 as introducing a se-
mantic change, but unlikely to be detected by a simple crash
oracle.

5.3 RQ2: Evaluating the sanitizer contribution
To answer this question, we re-run the previous experiment
with ASAN. To analyze the results of this experiment, we



Table 5: Results of the full benchmark run. The #Mutations column contains the number of mutations available. Phase I
represents 24-hour runs, Phase II represents the one-hour runs, and Total represents both combined. Covered represents the
number of covered mutants, while Killed represents the number of killed mutants. The combined rows show the total number of
mutants that were killed by any fuzzer.

Program #Mutations Fuzzer Phase I Covered Phase I Killed Phase II Covered Phase II Killed Total Covered Total Killed

cares_name 4822
afl 88 17 0 3 88 20
aflpp 88 18 0 2 88 20
honggfuzz 88 17 0 1 88 18
libfuzzer 86 17 0 0 86 17
combined 88 18 88 20

cares_parse_reply 4822
afl 937 292 0 29 937 321
aflpp 941 289 0 26 941 315
honggfuzz 940 290 1 23 941 313
libfuzzer 932 292 0 5 932 297
combined 941 305 941 324

curl 29118
afl 9,935 2,328 89 68 10,024 2,396
aflpp 11,713 2,593 69 82 11,782 2,675
honggfuzz 10,195 2,299 506 150 10,701 2,449
libfuzzer 8,895 2,099 120 39 9,015 2,138
combined 12,459 2,807 12,477 2,857

guetzli 22961
afl 6,943 1,691 6,189 1,827 13,132 3,518
aflpp 12,564 3,205 685 378 13,249 3,583
honggfuzz 13,586 3,698 0 72 13,586 3,770
libfuzzer 9,923 2,816 32 26 9,955 2,842
combined 13,610 3,810 13,610 3,912

libevent 17234
afl 425 75 0 6 425 81
aflpp 427 78 0 3 427 81
honggfuzz 421 77 1 3 422 80
libfuzzer 417 77 0 2 417 79
combined 427 80 427 81

re2 21407
afl 4,825 4,461 0 1 4,825 4,462
aflpp 11,563 4,457 65 134 11,628 4,591
honggfuzz 11,636 4,431 0 97 11,636 4,528
libfuzzer 11,164 4,328 0 20 11,164 4,348
combined 11,639 4,571 11,639 4,627

woff2_new 40914
afl 5,386 955 2 70 5,388 1,025
aflpp 5,578 1,044 1 69 5,579 1,113
honggfuzz 5,555 1,018 1 111 5,556 1,129
libfuzzer 5,018 896 2 20 5,020 916
combined 5,631 1,139 5,634 1,232

compare the percentage of killed mutants out of all covered
mutations. This is visualized for AFL++, Honggfuzz and
libFuzzer in Figure 4, omitting AFL due to its inconsistencies
between both oracles. The full results can be seen in Table 6.
We see a clear increase of the number of killed mutants when
using ASAN. Interestingly, enabling ASAN also results in
some crashes in the original no longer being reported, which
indicates a surprising effect of ASAN instrumentation in some
cases. Overall, with ASAN, AFL++ found 9.1% (+0.3%) of
mutations, Honggfuzz found 9.0% (+0.3%), AFL found 8.5%
(+0.1%), and libFuzzer found 7.9% (+0.4%).

ASAN moderately increases the number of killed
mutants.

5.4 RQ3: Mutant and Vulnerability Coupling

We analyzed the 100 most recent2 CVEs referencing GitHub
commits that patch .c, .cc, .cpp or .h files. A mutation
is identified as coupled to a vulnerability if this mutation
reintroduces the vulnerability into the patched program. We

2as of September 5th, 2022

will provide detailed results and justifications for this manual
analysis along with our code.

For the evaluated CVEs, the way our mutations reintroduce
bugs can be classified broadly as: (1) The program behavior is
modified such that the bug is reintroduced without side effects.
(2) The mutation reintroduces the bug, but also breaks some
functionality. (3) No mutation that reintroduces the bug can
be found.

1 - if (instr[y].size < 29)
2 + if (instr[y].size >= 4 && instr[y].size < 29)

Listing 2: Patch for CVE-2022-34927.

An example patch for the first category can be seen in
Listing 2. The added check for size >=4 can be reversed by
an UNSIGNED GREATER THAN EQUALTO mutation, which
will change the right-hand constant to 0 here, effectively re-
introducing the original bug without side effects.

1 + if (nft_chain_is_bound(chain))
2 + return -EINVAL;

Listing 3: Patch for CVE-2022-39190.

A very common pattern among the studied patches is the
introduction of a new branch checking an error condition.



Table 6: Results of the benchmark run when ASAN is enabled. The #Mutations column contains the number of mutations
available. Phase I represents 24-hour seed gathering, Phase II represents the one-hour runs, and Total represents both combined.
The Covered represents the number of mutants covered, while Killed represents the number of mutants killed. The combined
rows show the total number of mutants killed by any fuzzer.

Program #Mutations Fuzzer Phase I Covered Phase I Killed Phase II Covered Phase II Killed Total Covered Total Killed

cares_name 4822
afl 88 21 0 0 88 21
aflpp 88 22 0 0 88 22
honggfuzz 88 21 0 1 88 22
libfuzzer 87 21 0 1 87 22
combined 88 22 88 22

cares_parse_reply 4822
afl 938 429 0 1 938 430
aflpp 941 418 0 17 941 435
honggfuzz 940 427 1 7 941 434
libfuzzer 906 427 0 2 906 429
combined 941 432 941 438

curl 28779
afl 9,981 3,068 87 38 10,068 3,106
aflpp 11,680 3,458 68 73 11,748 3,531
honggfuzz 10,155 3,057 481 162 10,636 3,219
libfuzzer 8,833 2,728 130 80 8,963 2,808
combined 12,349 3,729 12,387 3,774

guetzli 22961
afl 3,713 1,019 3,187 903 6,900 1,922
aflpp 6,704 1,903 340 212 7,044 2,115
honggfuzz 7,253 2,273 0 52 7,253 2,325
libfuzzer 5,213 1,706 15 15 5,228 1,721
combined 7,261 2,330 7,263 2,363

libevent 17234
afl 423 117 0 7 423 124
aflpp 427 119 0 5 427 124
honggfuzz 421 116 1 7 422 123
libfuzzer 418 122 0 3 418 125
combined 427 124 427 126

re2 21407
afl 11,492 5,193 18 115 11,510 5,308
aflpp 11,485 5,209 68 183 11,553 5,392
honggfuzz 11,577 5,171 3 167 11,580 5,338
libfuzzer 11,003 5,009 4 81 11,007 5,090
combined 11,586 5,347 11,586 5,438

woff2_new 40914
afl 5,395 1,047 1 53 5,396 1,100
aflpp 5,574 1,113 2 47 5,576 1,160
honggfuzz 5,555 1,082 5 75 5,560 1,157
libfuzzer 4,958 990 1 19 4,959 1,009
combined 5,631 1,193 5,637 1,247

Table 7: Mutants killed during 24 hour runs on 104 stubborn
mutants for each subject (using ASAN).

Prog Total afl aflpp libfuzzer honggfuzz

re2 104 0 0 0 0
cares_parse_reply 104 0 0 0 0
woff2_new 104 0 0 0 1
curl 104 0 0 1 0
guetzli 104 0 0 0 1
libevent 104 0 0 0 0
cares_name 66 0 0 0 0

These mostly fall into the second category because the buggy
behavior can be triggered by inverting the branch condition
(REDIRECT BRANCH), although this will result in the rejection
of valid inputs. Listing 3 shows an example for this situation:
After applying the mutation, only invalid chains are accepted,
and valid input is discarded.

1 - length = dir->length;
2 + length += dir->length;

Listing 4: Patch for CVE-2022-29379.

Patches in the third category sometimes require a more
specialized mutation, such as the replacement of += with =

for the code in Listing 4. In other cases, patches may be
impossible to revert due to information being lost (e.g., a
deleted function call cannot be re-inserted).

For this analysis, we count vulnerabilities in categories (1)
and (2) as coupled to a mutation, as per definition, the vulner-
ability is reintroduced. As a result, 71 out of 100 analyzed
CVEs are covered by our mutations.

The mutations induced by our mutation operators
are coupled to real faults.

6 Discussion

Our paper demonstrates how to perform a principled, yet
practical comparison of two fuzzers to determine whether (1)
using one is better than using the other or (2) using both com-
bined is better than using each in isolation (Figure 3). Further-
more, we can measure the improvement in a fuzzer compared
to an older version without biasing the results on previously
discovered faults. Additionally, our approach can account for
sanitizers and other strong oracles, enabling a more principled
comparison of oracles. In summary, with this paper, we hope
to encourage fuzzing researchers to develop better fuzzers
without being unduly influenced by benchmarks.



UNSIGNED
GREATER THAN

UNSIGNED
GREATER THAN

EQUALTO

UNSIGNED LESS
THAN

UNSIGNED LESS
THAN EQUALTO

UNSIGNED TO
SIGNED

SIGNED LESS
THAN EQUALTO

SIGNED TO
UNSIGNED SNPRINTF SWITCH PLUS

MINUS SWITCH SHIFT

REASSIGN STORE
INSTRUCTION

REDIRECT
BRANCH

SIGNED GREATER
THAN

SIGNED GREATER
THAN EQUALTO

SIGNED LESS
THAN

DELETE STORE
PATTERN

FREE FUNCTION
ARGUMENT MALLOC NEW ARRAY PTHREAD MUTEX

CALLOC COMPARE EQUAL
TO

DELETE CALL
INSTRUCTION

PATTERN

DELETE
FUNCTION
ARGUMENT

DELETE LOCAL
STORE

af
l

af
lp

p
ho

ng
gf

uz
z

lib
fu

zz
er af

l
af

lp
p

ho
ng

gf
uz

z
lib

fu
zz

er af
l

af
lp

p
ho

ng
gf

uz
z

lib
fu

zz
er af

l
af

lp
p

ho
ng

gf
uz

z
lib

fu
zz

er af
l

af
lp

p
ho

ng
gf

uz
z

lib
fu

zz
er

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

P
er

ce
nt

ag
e 

of
 M

ut
an

ts

Result Covered Found

Figure 2: Percentage of covered and found mutants per mu-
tation type and fuzzer (all found mutations are inherently
covered). AFL underperforms for some mutation types due
to crashes caused by instrumentation bugs. This can also be
seen in Table 5 and Table 6.

Mutation analysis is the gold standard of measuring test
suite effectiveness in software testing and comes with solid
theory and empirical support. The only restriction in using it
for fuzzing so far has been the computational cost associated
with it. We have taken the first step in solving this issue,
making mutation analysis practical for fuzzing. As proof
that our approach indeed works in the real world, we have
compared four popular fuzzers on seven programs provided
by the OSS-Fuzz benchmark, the results of which we now
present.

Our experiments largely confirm the fuzzer ranking estab-
lished in previous literature [7, 33, 6]. AFL++ leads the board,
clearly outperforming AFL and libFuzzer (Honggfuzz was
not part of the evaluation in [6]). Furthermore, our evalua-
tion shows again that the fuzzers are very similar and either
AFL++ or Honggfuzz represent a solid choice. As expected,
the fuzzers in our evaluation have very limited targeted bug
finding capabilities, since there is nearly no improvement in

honggfuzz

aflpp afl

libfuzzer

262
(2.0%)

310
(2.4%)

137
(1.0%)

87
(0.7%)

382
(2.9%)

108
(0.8%)

24
(0.2%)

122
(0.9%)

41
(0.3%)

19
(0.1%)

1095
(8.4%)

59
(0.5%)

24
(0.2%)

129
(1.0%)

10254
(78.6%)

Total Mutants Killed: 13053

Overlap of Killed Mutants between Fuzzers

Figure 3: Venn diagram of killed mutants for each fuzzer.

the second phase. The re-evaluation with ASAN demonstrates
the importance of improved oracles, as the number of killed
mutants increases. It also shows that our approach is indeed
capable of evaluating the complete tool chain.

Implications. Why should we trust mutation analysis any
more than the numerous metrics out there, such as coverage
measures [69], defect-based benchmarks[7, 32], etc.?

As discussed in Section 2.3.2, mutants that remain alive
represent possible undetected faults in the program, and with
the detection of each new mutant, that possibility decreases
monotonically. That is, unlike coverage, alive mutations
are a good proxy measure for residual defects in a program.
Compared to defect-based benchmarks, mutation analysis
minimizes bias and manual effort. Finally, the mutations
themselves can be studied to provide examples to improve
fuzzers, without the limitations of coverage or the bias of
defect-based benchmarks.

Our results call for a reorientation of priorities in security
testing. We have focused mostly on improving coverage dur-
ing fuzzing. However, it seems that there is a lot more to
be gained by improving oracles instead. This is not simple,
however, and is known as the oracle problem in software
testing [70]. The difficulty is that there is no general way to
identify and extract the intended logic of a given program.
Some promising approaches exist that can help: (1) metamor-
phic relations [71, 72] and equivalence modulo inputs [73];
(2) differential oracles [74, 75]; and (3) invariants such as
those mined by Daikon [76] and the like. We believe that
future research should also be spent on improving the effec-
tiveness of these techniques rather than just pursuing the ever
shrinking returns on improving coverage.



2.7%

24.7%24.7%

0.0%

5.5%

21.9%21.9%

0.0%

5.6%

21.1%21.1%

0.0%

16.2%

32.3%32.3%

1.8%

16.3%

32.1%32.1%

1.8%

18.0%

31.5%31.5%

0.9%

7.0%

22.2%22.2%

0.6%

7.5%

21.9%21.9%

0.5%

7.5%

22.4%22.4%

0.6%

6.7%

23.3%23.3%

3.0%

7.4%

25.0%25.0%

2.5%

7.3%

25.4%25.4%

2.0%

12.4%

18.4%18.4%
0.6%

12.6%

18.3%18.3%
0.6%

12.1%

18.5%18.5%
0.6%

10.4%

35.8%35.8%

1.7%

10.4%

35.0%35.0%

1.8%

10.0%

35.4%35.4%

1.2%

3.7%
17.1%17.1%

2.9%

3.6%
17.2%17.2%

3.0%

3.0%
16.8%16.8%

1.1%

cares_name cares_parse_reply curl guetzli libevent re2 woff2_new

aflpp
honggfuzz

libfuzzer

default asan default asan default asan default asan default asan default asan default asan

0%
10%
20%
30%
40%

0%
10%
20%
30%
40%

0%
10%
20%
30%
40%

P
er

ce
nt

ag
e 

of
 C

ov
er

ed
 M

ut
at

io
ns

 th
at

 a
re

 K
ill

ed

Found By asan default both

Figure 4: Percentage of covered mutants (in both experiments) that are killed with and without ASAN. “Both” shows mutations
killed with or without ASAN, “default” those only found without ASAN, and “asan” shows kills only found using ASAN.

7 Limitations and Future Work

Our work is subject to the following important limitations.

Missing patterns and faults. We rely on a set of mutation
operators that we mined from real faults, which are un-
likely to be exhaustive. This can be mitigated by future
adaption of the supported mutations.

Cost of mutation analysis. While we reduced the cost of ap-
plying mutation analysis to fuzzers, a further reduction
would still improve the practicality of this approach. One
such approach could involve sampling mutations, reduc-
ing computation time at the cost of accuracy.

Coupling effect. We rely on the coupling effect hypothesis in
mutation analysis to ensure that the mutants we generate
are similar to real faults. The coupling effect is well at-
tested in literature [44, 45]. However, relying on the cou-
pling effect ignores subtle faults due to fault-interactions
(between faults). While there is some evidence that
such interactions are rare [77], they are still important
to address. One direction is exploring a larger neigh-
borhood, with multiple mutations in a mutant. Unlike
supermutants, however, we need mutations that inter-
act, and callability that we used for supermutants can
provide a first level approximation. Indeed, given that
mutation analysis is a form of fuzz-testing the software
test suite, the fuzzing community may be able to make
better progress here.

Allocated Time for Phases. Some fuzzers may not attempt
to expand the coverage front and instead scan for possi-
ble vulnerability patterns, using static analysis. In such
a case, the time provided for developing the coverage
seed may not be useful to the fuzzer and may lead to
unfair comparison. How to fairly compare such fuzzers
without the overhead of full mutation analysis is an open
question. (We note that while the coverage optimiza-
tion may not work, the supermutant optimization will
work even in such cases.) A possible solution is to use
the state-of-the-art coverage maximizing fuzzer on the
original program and extract the coverage mutants from
the given program. Next, use random sampling [78] to
identify a small set of coverage mutants, which when
combined with the (complete set of) stubborn and other
live mutants can serve to limit the overhead of full muta-
tion analysis. Another option is to use the state-of-the-art
coverage maximizing fuzzer and extract a mutant kill
matrix. Then, identify the minimal test suite and the
corresponding minimal mutant set, and use that minimal
mutant set for evaluation of coverage mutants. We note
that the relative merits of random sampling and mini-
mal mutant set still needs to be calibrated [78, 79]. For
random sampling, we note that a smaller sample size
may suffice in theory [80]. However, the actual practical
reduction in mutants is yet to be established (it is likely
to be program-specific).

Supermutants. We use supermutants to check whether any



fuzzer can find mutations that were not covered in the
initial seed files. In doing this, we run the risk of fault
masking. Hence, future work is to investigate the preva-
lence of fault masking and techniques to avoid fault
masking. We, however, note that fault masking is likely
to be rare. For one fault (say A) to mask the other (say
B), the following conditions have to be fulfilled: (1)
there should be no input that covers both in the coverage-
maximizing phase, (2) fault A should never cause a crash
independently (if it does, fault A would be removed and
the remaining faults would be fuzzed separately), (3)
there should be some inputs that cover both fault A and
fault B, and on these inputs, fault A should induce just
sufficient behavioral change such that, while the input
may have caused a crash without fault A, the crash is
removed when both are present. We believe that these
constraints make fault masking due to supermutants rare.

Comparing Fuzzers without Sanitizers. We find that san-
itizers can significantly improve the effectiveness of
fuzzers. However, mutation analysis can allow us to
go beyond merely accounting for the impact of sanitiz-
ers. We can compare the behavior (even coverage) of a
mutant against the original using differential fuzzing and
identify whether a fuzzer was able to induce a change in
behavior compared to the original even in the absence of
a suitable sanitizer. This will allow us to develop effec-
tive fuzzers that focus on input generation independent
of sanitizer development. Indeed, differential fuzzing
by keeping track of coverage or behavior divergence be-
tween original and mutants can provide strong hints on
which inputs hold promise in fuzzer guidance [81, 82].

8 Related Work

The comparison and evaluation of fuzzers is an important
foundation for meaningfully improving fuzzers. Several
fuzzing platforms exist [32, 7, 33] that seek to provide a
way to compare fuzzers under a common framework.

One such approach is LAVA [32], a tool to inject crash
bugs that can be triggered by finding specific values in unused
parts of user-controlled input. Later analysis showed that
the introduced bugs are dissimilar to real-world vulnerabili-
ties [2], are not coupled to real faults (reported CVEs) [11],
tend to overfit [9], and are “solved” by modern fuzzers [83].
In comparison, bugs from mutation analysis are not guaran-
teed to be triggerable. However, this is a trade-off making
it possible to create a comprehensive set of bugs, spanning
from trivially detectable to subtle and hard-to-detect ones.
A similar approach that can insert bugs into subjects is Evil
Coder [84]. Potentially vulnerable source code locations are
detected using data flow analysis, focusing on user-controlled
inputs that lead to sensitive functions. A bug is introduced by
removing security-relevant checks, such as input sanitization.

While our approach is not as targeted, mutation testing will
not only generate similar bugs but also a wider range of bugs.

The challenge binaries of the Cyber Grand Challenge
(CGC) [85] are also sometimes used for comparison of fuzzers
[2]. The binaries were especially created for the CGC. Hence,
challenge binaries necessarily have a bias to be used in the
CGC and consist mostly of command line tools.

A recent benchmarking approach is Magma [7]. It uses real-
world vulnerabilities and re-inserts them into newer versions
of the projects. Additionally, it provides an assertion that tests
if an input results in a state that would trigger the bug. This
assertion is used to measure bug detection capability. As in
other benchmarks, the number of bugs is limited because of
the manual effort to port them to the current version and has
a necessary bias towards bugs that can be re-inserted.

Another project is Fuzzbench [33], using Google infrastruc-
ture. Fuzzbench already provides coverage-based benchmarks
and is working on supporting bug-based benchmarks [86].

FIXREVERTER [6] mines a restricted set of syntactic pat-
terns from bug fixes that were associated with vulnerabilities
and injects these bugs where the bug inducibility can be guar-
anteed, but has several limitations. First, the researchers could
identify only three general patterns accounting for 170 CVEs
from a study of 814 CVEs (20.9%). Second, using patterns
with semantic analysis to guarantee bug inducibility restricts
the number of fixes that can be reverted. Such a guarantee
also limits what kinds of bugs can be simulated, as the spe-
cific bug patterns and corresponding bug semantics that were
mined represent only a small fraction of the possible bugs that
can be present in a given program (in contrast to mutation
analysis). This might also open the door to fine-tuning fuzzers
for specifically identifying such behavior. These drawbacks
reduce the diversity of bugs and thus the effectiveness of the
benchmark [78, 79]. Finally, FIXREVERTER does not address
the issue of fault-interactions and fault-masking.

Böhme et al. suggest that coverage-based benchmarking
can be unreliable based on a comparison with curated bugs [8].
The paper illustrates the difficulty we face when we rely on
an external source of bugs. In particular, because the bugs
that the researchers rely on are external, the distribution of
such bugs is not related to the actual possibility of bugs in
the tested program. To illustrate this, consider the following
thought experiment: Given a benchmark program that accepts
inputs as JSON and a black-box random fuzzer. The fuzzer
will find lots of crashing bugs in the JSON parser itself but
few in the program logic. Any ranking using this source of
bugs will favor fuzzers that find bugs in the JSON parser when
compared to, say, a grammar fuzzer that reaches the program
internals. Hence, the ranking based on finding such bugs is
not a reliable indicator of fuzzer quality. This is precisely
what (unbiased) mutation analysis aims to correct.

Beyond Fuzzing. Mutation analysis can also be applied for
software verification tasks beyond fuzzing. It can be used



to evaluate the quality of static analysis tools [87], of type
systems [88] (good type systems can make whole classes
of errors non-representable), contracts [89], and even the
effectiveness of program proofs [90].

9 Conclusion

As fuzzing budget is limited, it is important to use fuzzers
that are better at finding faults. The available benchmarks
are, however, limited or biased towards known bugs and are
susceptible to overfitting and fine-tuning.

This paper demonstrates how the gold standard for measur-
ing test suite quality—mutation analysis—can be adapted for
fuzzing. We show that two techniques, eliminating coverage
mutants using static seed files and using supermutants for
the remaining evaluation, can significantly reduce the com-
putational expenditure necessary for mutation analysis and
can make mutation analysis feasible for fuzzing. We inves-
tigated security faults and converted the identified patterns
into security-specific mutation operators, which were used
for evaluation. Using mutation analysis, practitioners are no
longer limited to specific curated benchmarks. Instead, prac-
titioners can evaluate fuzzers on the programs from a specific
domain before allocating resources for fuzzing.

Our evaluation demonstrates that with our technique, mu-
tation analysis can now be used for comparing fuzzers in
real-world programs. Using mutation analysis ensures that
the practitioners can rely on the solid theory and decades of
empirical research, leading to better fuzzers and sanitizers.
The fine-grained results from mutation analysis can directly
help fuzzing practitioners to understand the deficiencies in
current approaches and take steps to correct them.

Acknowledgements

This work was funded by the European Research Council
(ERC) under the consolidator grant RS3 (101045669) and
the German Federal Ministry of Education and Research un-
der the grant KMU-Fuzz (16KIS1523). This work was par-
tially supported with funds from the Bosch Research Founda-
tion in the Stifterverband (Reference: T113/33825/19). This
work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy – EXC-2092 CASA – 390781972. We also
thank the following colleagues and researchers for their help:
Addison Crump, Joschua Schilling, Marcel Böhme, and Ab-
hilash Gupta.

References

[1] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. “Fuzzing:
Challenges and Reflections”. IEEE Software 38 (2021).

[2] George Klees et al. “Evaluating Fuzz Testing”. ACM Conference on
Computer and Communications Security (CCS). 2018.

[3] Tielei Wang et al. “TaintScope: A Checksum-Aware Directed
Fuzzing Tool for Automatic Software Vulnerability Detection”. IEEE
Symposium on Security and Privacy (S&P). 2010.

[4] Sebastian Österlund et al. “ParmeSan: Sanitizer-guided Greybox
Fuzzing”. USENIX Security Symposium. 2020.

[5] Rahul Gopinath, Carlos Jensen, and Alex Groce. “Code coverage
for suite evaluation by developers”. International Conference on
Software Engineering (ICSE). 2014.

[6] Zenong Zhang et al. “FIXREVERTER: A Realistic Bug Injection
Methodology for Benchmarking Fuzz Testing”. USENIX Security
Symposium. 2022.

[7] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. “Magma: A
Ground-Truth Fuzzing Benchmark”. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 4 (2020).

[8] Marcel Böhme, László Szekeres, and Jonathan Metzman. “On the
Reliability of Coverage-Based Fuzzer Benchmarking”. International
Conference on Software Engineering (ICSE). 2022.

[9] Andreas Zeller, Sascha Just, and Kai Greshake. When Results Are
All That Matters: The Case of the Angora Fuzzer. 2019. URL:
https://andreas-zeller.info/2019/10/10/when-results-are-
all-that-matters-case.html (visited on 10/12/2022).

[10] Andreas Zeller, Sascha Just, and Kai Greshake. When Results Are All
That Matters: Consequences. 2019. URL: https : / / andreas -
zeller . info / 2019 / 10 / 17 / when - results - are - all - that -
matters.html (visited on 10/12/2022).

[11] Joshua Bundt et al. “Evaluating Synthetic Bugs”. ACM Symposium
on Information, Computer and Communications Security (ASIACCS).
2021.

[12] Mike Papadakis et al. “Mutation Testing Advances: An Analysis and
Survey”. Advances in Computers. Ed. by Atif M. Memon. Vol. 112.
Elsevier, 2019.

[13] Michele Tufano et al. “Learning How to Mutate Source Code from
Bug-Fixes”. IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). 2019.

[14] Zakir Durumeric et al. “The Matter of Heartbleed”. Internet Mea-
surement Conference (IMC). 2014.

[15] Synopsis Editorial Team. Understanding the Apple ‘goto fail;’
vulnerability. 2014. URL: https : / / www . synopsys . com /
blogs/software-security/understanding-apple-goto-fail-
vulnerability-2/ (visited on 10/12/2022).

[16] Tatum Hunter and Gerrit De Vynck. “The ‘most serious’ security
breach ever is unfolding right now. Here’s what you need to know.”
The Washington Post (2021). URL: https://www.washingtonpost.
com/technology/2021/12/20/log4j-hack-vulnerability-java/
(visited on 10/12/2022).

[17] J. H. Andrews, L. C. Briand, and Y. Labiche. “Is mutation an ap-
propriate tool for testing experiments?” International Conference on
Software Engineering (ICSE). 2005.

[18] René Just et al. “Are mutants a valid substitute for real faults in
software testing?” ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE). 2014.

[19] Mike Papadakis et al. “Are mutation scores correlated with real
fault detection?: a large scale empirical study on the relationship be-
tween mutants and real faults”. International Conference on Software
Engineering (ICSE). 2018.

[20] Tejeddine Mouelhi, Yves Le Traon, and Benoit Baudry. “Mutation
Analysis for Security Tests Qualification”. Testing: Academic and In-
dustrial Conference Practice and Research Techniques - MUTATION
(TAICPART-MUTATION). 2007.

https://andreas-zeller.info/2019/10/10/when-results-are-all-that-matters-case.html
https://andreas-zeller.info/2019/10/10/when-results-are-all-that-matters-case.html
https://andreas-zeller.info/2019/10/17/when-results-are-all-that-matters.html
https://andreas-zeller.info/2019/10/17/when-results-are-all-that-matters.html
https://andreas-zeller.info/2019/10/17/when-results-are-all-that-matters.html
https://www.synopsys.com/blogs/software-security/understanding-apple-goto-fail-vulnerability-2/
https://www.synopsys.com/blogs/software-security/understanding-apple-goto-fail-vulnerability-2/
https://www.synopsys.com/blogs/software-security/understanding-apple-goto-fail-vulnerability-2/
https://www.washingtonpost.com/technology/2021/12/20/log4j-hack-vulnerability-java/
https://www.washingtonpost.com/technology/2021/12/20/log4j-hack-vulnerability-java/


[21] Frédéric Dadeau, Pierre-Cyrille Héam, and Rafik Kheddam.
“Mutation-Based Test Generation from Security Protocols in
HLPSL”. IEEE International Conference on Software Testing, Verifi-
cation and Validation (ICST). 2011.

[22] Daniel Woodraska, Michael Sanford, and Dianxiang Xu. “Security
mutation testing of the FileZilla FTP server”. ACM Symposium on
Applied Computing (SAC). 2011.

[23] Yves Le Traon, Tejeddine Mouelhi, and Benoit Baudry. “Testing
Security Policies: Going Beyond Functional Testing”. IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE).
2007.

[24] Thomas Loise et al. “Towards Security-Aware Mutation Testing”.
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). 2017.

[25] Amit Seal Ami et al. “µSE: Mutation-Based Evaluation of Security-
Focused Static Analysis Tools for Android”. International Con-
ference on Software Engineering: Companion (ICSE-Companion).
2021.

[26] Lu Yu et al. “Vulnerability-oriented directed fuzzing for binary
programs”. Scientific Reports 12 (2022).

[27] Rahul Gopinath, Bjorn Mathis, and Andreas Zeller. “If You Can’t
Kill a Supermutant, You Have a Problem”. IEEE International Con-
ference on Software Testing, Verification and Validation Workshops
(ICSTW). 2018.

[28] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address
Sanity Checker”. USENIX Annual Technical Conference. 2012.

[29] IEEE. “IEEE Standard Classification for Software Anomalies”. IEEE
Std 1044-2009 (Revision of IEEE Std 1044-1993) 0 (2010).

[30] Yiqun T. Chen et al. “Revisiting the relationship between fault
detection, test adequacy criteria, and test set size”. IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE).
2020.

[31] Alessandro Mantovani, Andrea Fioraldi, and Davide Balzarotti.
“Fuzzing with Data Dependency Information”. IEEE European Sym-
posium on Security and Privacy (EuroS&P). 2022.

[32] Brendan Dolan-Gavitt et al. “LAVA: Large-Scale Automated Vulner-
ability Addition”. IEEE Symposium on Security and Privacy (S&P).
2016.

[33] Jonathan Metzman et al. “FuzzBench: an open fuzzer benchmarking
platform and service”. European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ES-
EC/FSE). 2021.

[34] Goran Petrović and Marko Ivanković. “State of mutation testing
at google”. Proceedings of the 40th international conference on
software engineering: Software engineering in practice. 2018.

[35] Moritz Beller et al. “What it would take to use mutation testing
in industry—a study at facebook”. 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). 2021.

[36] Goran Petrovic et al. “An industrial application of mutation testing:
Lessons, challenges, and research directions”. 2018 IEEE Interna-
tional Conference on Software Testing, Verification and Validation
Workshops (ICSTW). 2018.

[37] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. “Estab-
lishing theoretical minimal sets of mutants”. 2014 IEEE seventh
international conference on software testing, verification and valida-
tion. 2014.

[38] Rahul Gopinath et al. “Measuring effectiveness of mutant sets”. 2016
IEEE Ninth International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW). 2016.

[39] Rahul Gopinath, Carlos Jensen, and Alex Groce. “Mutations: How
Close are they to Real Faults?” IEEE International Symposium on
Software Reliability Engineering (ISSRE). 2014.

[40] A. Jefferson Offutt. “Investigations of the software testing coupling
effect”. ACM Transactions on Software Engineering and Methodol-
ogy 1 (1992).

[41] K. S. How Tai Wah. “A theoretical study of fault coupling”. Software
Testing, Verification and Reliability 10 (2000).

[42] K. S. How Tai Wah. “Theoretical Insights into the Coupling Ef-
fect”. Mutation Testing for the New Century. Ed. by W. Eric Wong.
Springer US, 2001.

[43] K. S. How Tai Wah. “An analysis of the coupling effect I: single test
data”. Science of Computer Programming 48 (2003).

[44] Rahul Gopinath, Carlos Jensen, and Alex Groce. “The Theory of
Composite Faults”. IEEE International Conference on Software
Testing, Verification and Validation (ICST). 2017.

[45] René Just et al. “Are mutants a valid substitute for real faults in
software testing?” ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE). 2014.

[46] Goran Petrovic et al. “Does Mutation Testing Improve Testing Prac-
tices?” International Conference on Software Engineering (ICSE).
2021.

[47] Thierry Titcheu Chekam et al. “An Empirical Study on Mutation,
Statement and Branch Coverage Fault Revelation That Avoids the
Unreliable Clean Program Assumption”. International Conference
on Software Engineering (ICSE). 2017.

[48] René Just, Michael D. Ernst, and Gordon Fraser. “Efficient mutation
analysis by propagating and partitioning infected execution states”.
International Symposium on Software Testing and Analysis (ISSTA).
2014.

[49] W.E. Howden. “Weak Mutation Testing and Completeness of Test
Sets”. IEEE Transactions on Software Engineering 8 (1982).

[50] Susumu Tokumoto et al. “MuVM: Higher Order Mutation Analysis
Virtual Machine for C”. IEEE International Conference on Software
Testing, Verification and Validation (ICST). 2016.

[51] Rahul Gopinath, Carlos Jensen, and Alex Groce. “Topsy-Turvy: a
smarter and faster parallelization of mutation analysis”. International
Conference on Software Engineering (ICSE). 2016.

[52] Bo Wang et al. “Faster mutation analysis via equivalence modulo
states”. International Symposium on Software Testing and Analysis
(ISSTA). 2017.

[53] Ali Ghanbari and Andrian Marcus. “Toward Speeding up Mutation
Analysis by Memoizing Expensive Methods”. International Con-
ference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). 2021.

[54] Rahul Gopinath, Philipp Görz, and Alex Groce. Mutation Analysis:
Answering the Fuzzing Challenge. 2022. arXiv: 2201.11303[cs].

[55] Iftekhar Ahmed et al. “Can testedness be effectively measured?”
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). 2016.

[56] Terence Tao. An introduction to measure theory. Vol. 126. American
Mathematical Society Providence, RI, 2011.

[57] Mauro Pezze and Michal Young. Software testing and analysis:
process, principles, and techniques. John Wiley & Sons, 2008.

[58] Marcel Böhme. “Assurances in Software Testing: A Roadmap”.
International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). 2019.

[59] Nan Li, Upsorn Praphamontripong, and Jeff Offutt. “An experi-
mental comparison of four unit test criteria: Mutation, edge-pair,
all-uses and prime path coverage”. IEEE International Conference
on Software Testing, Verification and Validation (ICST). 2009.

https://arxiv.org/abs/2201.11303 [cs]


[60] Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu. “All-uses vs
mutation testing: An experimental comparison of effectiveness”.
Journal of Systems and Software 38 (1997).

[61] Sahitya Kakarla, Selina Momotaz, and Akbar Siami Namin. “An
evaluation of mutation and data-flow testing: A meta-analysis”. IEEE
International Conference on Software Testing, Verification and Vali-
dation (ICST). 2011.

[62] Gary Kaminski, Paul Ammann, and Jeff Offutt. “Improving logic-
based testing”. Journal of Systems and Software 86 (2013).

[63] Yue Jia and Mark Harman. “An Analysis and Survey of the De-
velopment of Mutation Testing”. IEEE Transactions on Software
Engineering 37 (2011).

[64] Xiangjuan Yao, Mark Harman, and Yue Jia. “A study of equivalent
and stubborn mutation operators using human analysis of equiva-
lence”. International Conference on Software Engineering (ICSE).
2014.

[65] CWE VIEW: Weaknesses in Software Written in C. 2021. URL:
https://cwe.mitre.org/data/definitions/658.html (visited on
10/12/2021).

[66] CWE VIEW: Weaknesses in Software Written in C++. 2021. URL:
https://cwe.mitre.org/data/definitions/659.html (visited on
10/12/2021).

[67] OSS-Fuzz. 2021. URL: https://google.github.io/oss-fuzz/
(visited on 10/12/2022).

[68] cloc. 2023. URL: https://github.com/AlDanial/cloc (visited on
02/10/2023).

[69] Alex Groce, Mohammad Amin Alipour, and Rahul Gopinath. “Cov-
erage and Its Discontents”. Conference on Systems, Programming,
and Applications: Software for Humanity (SPLASH). 2014.

[70] Earl T. Barr et al. “The Oracle Problem in Software Testing: A
Survey”. IEEE Transactions on Software Engineering 41 (2015).

[71] Sergio Segura et al. “A Survey on Metamorphic Testing”. IEEE
Transactions on Software Engineering 42 (2016).

[72] Tsong Yueh Chen et al. “Metamorphic Testing for Cybersecurity”.
Computer 49 (2016).

[73] Vu Le, Mehrdad Afshari, and Zhendong Su. “Compiler validation
via equivalence modulo inputs”. ACM SIGPLAN Notices 49 (2014).

[74] William M McKeeman. “Differential testing for software”. Digital
Technical Journal 10 (1998).

[75] Muhammad Ali Gulzar, Yongkang Zhu, and Xiaofeng Han. “Percep-
tion and Practices of Differential Testing”. International Conference
on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). 2019.

[76] Michael D. Ernst et al. “The Daikon system for dynamic detection
of likely invariants”. Science of Computer Programming 69 (2007).

[77] D.R. Kuhn, D.R. Wallace, and A.M. Gallo. “Software fault interac-
tions and implications for software testing”. IEEE Transactions on
Software Engineering 30 (2004).

[78] Rahul Gopinath et al. “On the limits of mutation reduction strategies”.
International Conference on Software Engineering (ICSE). 2016.

[79] Rahul Gopinath et al. “Mutation Reduction Strategies Considered
Harmful”. IEEE Transactions on Reliability 66 (2017).

[80] R. Gopinath et al. “How hard does mutation analysis have to be
anyway?” Software Reliability Engineering (ISSRE), 2014 IEEE
26th International Symposium on. 2015.

[81] Alex Groce et al. “Registered report: First, fuzz the mutants”. Inter-
national Fuzzing Workshop, ser. FUZZING. Vol. 22. 2022.

[82] Vasudev Vikram et al. “Guiding Greybox Fuzzing with Mutation
Testing”. International Symposium on Software Testing and Analysis
(ISSTA). 2023.

[83] Cornelius Aschermann et al. “REDQUEEN: Fuzzing with Input-to-
State Correspondence”. Symposium on Network and Distributed
System Security (NDSS). 2019.

[84] Jannik Pewny and Thorsten Holz. “EvilCoder: Automated Bug Inser-
tion”. Annual Computer Security Applications Conference (ACSAC).
2016.

[85] DARPA. Cyber Grand Challenge. 2016. URL: https://www.
ll . mit . edu / research - and - development / cyber - security -
and- information- sciences/cyber- grand- challenge (visited
on 10/12/2022).

[86] Various Authors. “Use bugs to measure fuzzer performance”.
github.com/google/fuzzbench (2023). URL: https://github.com/
google/fuzzbench/issues/165 (visited on 02/10/2023).

[87] Sajeda Parveen and Manar H Alalfi. “A mutation framework for
evaluating security analysis tools in IoT applications”. 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 2020.

[88] Rahul Gopinath and Eric Walkingshaw. “How Good Are Your Types?
Using Mutation Analysis to Evaluate the Effectiveness of Type An-
notations”. IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). 2017.

[89] Alexander Knüppel, Leon Schaer, and Ina Schaefer. “How much
specification is enough? Mutation analysis for software contracts”.
2021 IEEE/ACM 9th International Conference on Formal Methods
in Software Engineering (FormaliSE). 2021.

[90] Kush Jain et al. “mCoq: mutation analysis for Coq verification
projects”. Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering: Companion Proceedings. 2020.

A Appendix

A.1 Supplements for Evaluation
Additional results as mentioned in the Section 5.

Table 8: Number of mutants that were covered together with
other mutants (i.e., mutants wrongly thought independent).

Program afl aflpp honggfuzz libfuzzer

cares_name 4 0 0 0
cares_parse_reply 2 4 4 0
curl 4,850 5,836 4,851 3,852
guetzli 10 24 16 0
libevent 0 2 0 0
re2 39 66 37 47
woff2_new 26 46 56 48

Supplementary Information for Table 8 Any non-inde-
pendent mutants recorded during Phase II are given in Table 8.
We find that except for curl, the number of multi-covered mu-
tants is minimal. For curl the interaction between mutations
is caused by mutations that result in an error when handling
http, these are then retried with the http2 protocol, covering
functions and mutations there. This kind of interactions can
also occur in utility functions.

https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/659.html
https://google.github.io/oss-fuzz/
https://github.com/AlDanial/cloc
https://www.ll.mit.edu/research-and-development/cyber-security-and-information-sciences/cyber-grand-challenge
https://www.ll.mit.edu/research-and-development/cyber-security-and-information-sciences/cyber-grand-challenge
https://www.ll.mit.edu/research-and-development/cyber-security-and-information-sciences/cyber-grand-challenge
https://github.com/google/fuzzbench/issues/165
https://github.com/google/fuzzbench/issues/165


Table 9: The number of mutants Covered or Killed for Default and ASAN experiments, for each mutation type and fuzzer.

Mutation Type Fuzzer Cov Def Cov Asan Kill Def Kill Asan Mutation Type Fuzzer Cov Def Cov Asan Kill Def Kill Asan

MALLOC
afl 41 34 21 21

SIGNED LESS
THAN

afl 447 543 104 95
aflpp 41 34 21 21 aflpp 670 556 116 103
honggfuzz 41 34 20 21 honggfuzz 672 555 111 100
libfuzzer 40 34 14 21 libfuzzer 571 471 100 91

SIGNED
GREATER THAN

afl 434 590 33 34
SIGNED LESS
THAN EQUALTO

afl 2 2 0 0
aflpp 719 603 38 36 aflpp 2 2 0 0
honggfuzz 725 604 42 35 honggfuzz 2 2 0 0
libfuzzer 614 526 28 29 libfuzzer 2 2 0 0

SIGNED
GREATER THAN
EQUALTO

afl 4 4 0 0
FREE FUNCTION
ARGUMENT

afl 923 887 918 879
aflpp 4 4 0 0 aflpp 981 945 976 939
honggfuzz 4 4 0 0 honggfuzz 944 909 940 905
libfuzzer 3 3 0 0 libfuzzer 876 843 870 837

PTHREAD
MUTEX

afl 3 3 0 0
SIGNED TO
UNSIGNED

afl 825 1,172 32 30
aflpp 3 3 0 0 aflpp 1,393 1,197 38 35
honggfuzz 3 3 0 0 honggfuzz 1,407 1,209 35 34
libfuzzer 3 2 0 0 libfuzzer 1,201 1,060 32 29

UNSIGNED TO
SIGNED

afl 1,470 1,617 46 49
SWITCH SHIFT

afl 568 692 6 9
aflpp 1,984 1,682 53 51 aflpp 903 785 5 13
honggfuzz 1,981 1,666 52 55 honggfuzz 825 711 2 9
libfuzzer 1,736 1,489 40 48 libfuzzer 718 635 3 9

CALLOC
afl 1 1 1 1

DELETE LOCAL
STORE

afl 203 236 96 89
aflpp 1 1 1 1 aflpp 277 254 108 98
honggfuzz 1 1 1 1 honggfuzz 273 252 107 96
libfuzzer 1 1 1 1 libfuzzer 244 227 100 89

UNSIGNED LESS
THAN

afl 885 940 167 140
UNSIGNED
GREATER THAN

afl 625 664 71 76
aflpp 1,121 970 182 145 aflpp 825 686 68 79
honggfuzz 1,125 968 180 148 honggfuzz 819 679 77 86
libfuzzer 960 829 145 117 libfuzzer 728 600 54 56

UNSIGNED LESS
THAN EQUALTO

afl 12 11 0 0 UNSIGNED
GREATER THAN
EQUALTO

afl 23 17 0 0
aflpp 15 13 0 0 aflpp 25 17 0 0
honggfuzz 15 13 0 0 honggfuzz 25 17 0 0
libfuzzer 13 11 0 0 libfuzzer 25 17 0 0

COMPARE EQUAL
TO

afl 2,367 2,643 1,055 1,164
SNPRINTF

afl 14 9 0 0
aflpp 3,060 2,816 1,103 1,243 aflpp 14 9 0 0
honggfuzz 2,992 2,741 1,074 1,209 honggfuzz 14 9 0 0
libfuzzer 2,620 2,390 974 1,088 libfuzzer 13 9 0 0

NEW ARRAY
afl 2 21 2 13

SWITCH PLUS
MINUS

afl 5,001 4,089 1,845 1,484
aflpp 21 21 2 13 aflpp 5,928 4,489 1,884 1,543
honggfuzz 21 21 2 13 honggfuzz 5,692 4,240 1,916 1,589
libfuzzer 21 21 2 13 libfuzzer 4,716 3,544 1,495 1,321

REDIRECT
BRANCH

afl 8,120 8,539 3,192 3,233 DELETE
FUNCTION
ARGUMENT

afl 466 433 465 432
aflpp 10,061 8,967 3,335 3,472 aflpp 469 436 468 435
honggfuzz 9,963 8,806 3,311 3,432 honggfuzz 469 436 468 435
libfuzzer 8,534 7,578 2,819 3,038 libfuzzer 447 415 445 414

DELETE STORE
PATTERN

afl 6,935 7,006 1,885 2,003 DELETE CALL
INSTRUCTION
PATTERN

afl 1,545 1,607 184 741
aflpp 8,560 7,381 1,995 2,117 aflpp 2,122 1,757 193 838
honggfuzz 8,471 7,256 2,002 2,088 honggfuzz 2,022 1,666 192 800
libfuzzer 7,060 6,253 1,752 1,881 libfuzzer 1,699 1,436 166 708

REASSIGN STORE
INSTRUCTION

afl 2,421 2,241 368 372
aflpp 2,878 2,354 400 388
honggfuzz 2,854 2,331 404 395
libfuzzer 2,300 1,940 354 345



A.2 Supplements for Approach
The full list of mutation operators as mentioned in Section 3.

Table 10: List of all mutations used in our study.

Pattern Name Description Procedure

MALLOC Mutating all malloc calls to achieve buffer overflow/out of bounds errors. We decrease allocated memory byte_size in the malloc call by 16.
FGETS MATCH BUFFER SIZE Mutating all fgets calls to achieve buffer overflow errors. We increase the size (n) parameter in the fgets call by increasing the value by 1

and then multiplying it by 5. E.g. 4->5->25.
SIGNED LESS THAN Mutating all ’<’ comparisons either between two integer pointers or between 1

signed integer variable and an integer to achieve overflow errors.
For pointer comparison, 8*4=32 is added to the right hand side pointer in the
comparison. For integer comparison, the integer on the right hand side is squared
if larger than 1024 or smaller than 2, else 32 is added.

SIGNED GREATER THAN Mutating all ’>’ comparisons either between two integer pointers or between 1
signed integer variable and an integer to achieve underflow errors.

For pointer comparison, 8*4=32 is subtracted from the right hand side pointer
in the comparison. For integer comparison, either the sqrt is taken for integers >
1024*1024, halved for integers > 1024 and either 0 is returned or 32 is substracted,
whatever gives the largest result.

SIGNED LESS THAN EQUALTO Mutating all ’<=’ comparisons either between two integer pointers or between 1
signed integer variable and an integer to achieve overflow errors.

For pointer comparison, 8*4=32 is added to the right hand side pointer in the
comparison. For integer comparison, the integer on the right hand side is squared
if larger than 1024 or smaller than 2, else 32 is added.

SIGNED GREATER THAN
EQUALTO

Mutating all ’>=’ comparisons either between two integer pointers or between 1
signed integer variable and an integer to achieve underflow errors.

For pointer comparison, 8*4=32 is subtracted from the right hand side pointer
in the comparison. For integer comparison, either the sqrt is taken for integers >
1024*1024, halved for integers > 1024 and either 0 is returned or 32 is substracted,
whatever gives the largest result.

FREE FUNCTION ARGUMENT Mutating all functions that receive a pointer type function argument to achieve
double free and possibly illegal memory access errors.

We check for functions that receive a pointer type argument. Before returning at
the end of the function, one argument per mutant is freed.

PTHREAD MUTEX Mutating all pthread_lock and pthread_unlock calls to achieve data races errors. We remove all pthread_lock and pthread_unlock calls in a function per mutant.
ATOMIC CMP XCHG Mutating all atomic compare exchanges to achieve data races. If we have at least one atomic cmpxchg instruction, we replace all atomic cmpxchg

return success values (the element with index 1 in the result array) by 1 per
function.

ATOMICRMW REPLACE Mutating all atomicrmw instructions to achieve data races. Takes the given atomic instruction and replaces it with its non-atomic counterpart
for the following instructions: ADD, SUB, AND, OR, XOR, FADD, FSUB. For
other operators no mutation is done, the mutant is equivalent.

SIGNED TO UNSIGNED Mutating all signed integer comparisons to achieve overflow and out of bound
errors.

Each of the four integer comparison predicates - ICMP_SGT, ICMP_SGE,
ICMP_SLT, ICMP_SLE are transformed into the corresponding unsigned predi-
cates - ICMP_UGT, ICMP_UGE, ICMP_ULT, ICMP_ULE respectively.

UNSIGNED TO SIGNED Mutating all unsigned integer comparisons to achieve overflow and out of bounds
errors.

Each of the four integer comparison predicates - ICMP_UGT, ICMP_UGE,
ICMP_ULT, ICMP_ULE are transformed into the corresponding unsigned predi-
cates - ICMP_SGT, ICMP_SGE, ICMP_SLT, ICMP_SLE respectively.

SWITCH SHIFT Mutating all shift calls to achieve overflow and out of bounds errors. Replaces an arithmetic shift with a logical shift and vice versa.
CALLOC Mutating all calloc calls to achieve overflow and out of bounds errors. The size parameter’s value is decreased by 16.
DELETE LOCAL STORE Mutating all stores on a local variable in one function to achieve uninitialization

errors.
The store call is removed.

UNSIGNED LESS THAN Mutating all ’<’ comparisons either between two integer pointers or between 1
unsigned integer variable and an integer to achieve overflow errors.

For pointer comparison, 8*4=32 is added to the right hand side pointer in the
comparison. For integer comparison, the integer on the right hand side is squared
if larger than 1024 or smaller than 2, else 32 is added.

UNSIGNED GREATER THAN Mutating all ’>’ comparisons either between two integer pointers or between 1
unsigned integer variable and an integer to achieve underflow errors.

For pointer comparison, 8*4=32 is subtracted from the right hand side pointer
in the comparison. For integer comparison, either the sqrt is taken for integers >
1024*1024, halved for integers > 1024 and either 0 is returned or 32 is substracted,
whatever gives the largest result.

UNSIGNED LESS THAN EQUALTO Mutating all ’<=’ comparisons either between two integer pointers or between 1
unsigned integer variable and an integer to achieve overflow errors.

For pointer comparison, 8*4=32 is added to the right hand side pointer in the
comparison. For integer comparison, the integer on the right hand side is squared
if larger than 1024 or smaller than 2, else 32 is added.

UNSIGNED GREATER THAN
EQUALTO

Mutating all ’>=’ comparisons either between two integer pointers or between 1
unsigned integer variable and an integer to achieve underflow errors.

For pointer comparison, 8*4=32 is subtracted from the right hand side pointer
in the comparison. For integer comparison, either the sqrt is taken for integers >
1024*1024, halved for integers > 1024 and either 0 is returned or 32 is substracted,
whatever gives the largest result.

INET ADDR FAIL WITH-
OUTCHECK

Mutating all calls to the libc function inet_addr to achieve unhandled non-
established connection errors.

Replaces all uses of the function return value to the failure value. Also removes
the function call from the corpus as a fail of the function call should be simulated.
Furthermore, the comparison instructions are flipped, s.t. on failure the ’correct’
path is taken, i.e. we simulate a missing check for the error return value.

COMPARE EQUAL TO Mutating all ’==’ comparisons between two integers to ’=’. The value of integer on the right hand side is assigned to the variable on the left.
The condition passes and the inside block is executed as long as the value on the
RHS is not equal to 0.

PRINTF Mutating printf such that the format string gets already filled and then plainly
printed.

Mutating printf such that the format string is already filled on printing, so instead
of calling printf(’%d %s’, 10, string); we simulate the call printf(’10 <string-
value>’);. This might cause illegal memory accesses and printing of secrets if the
string argument is user controlled.

SPRINTF Mutating sprintf such that the format string gets already filled and then plainly
printed.

Mutating sprintf such that the format string is already filled on printing, so instead
of calling sprintf(’%d %s’, buffer, 10, string); we simulate the call sprintf(’10
<string-value>’, buffer);. This might cause illegal memory accesses and printing
of secrets if the string argument is user controlled.

SNPRINTF Mutating snprintf such that the format string gets already filled and then plainly
printed.

Mutating snprintf such that the format string is already filled on printing, so
instead of calling snprintf(’%d %s’, size, buffer, 10, string); we simulate the
call snprintf(’10 <string-value>’, size, buffer);. This might cause illegal memory
accesses and printing of secrets if the string argument is user controlled.

NEW ARRAY Mutating new[] in (only) cpp files such that the array is allocated lesser memory We decrease allocated memory size in the ’new’ call by 5 units.
SWITCH PLUS MINUS Changing a ’+’ operator to a ’-’ operator and vice versa. Changing a ’+’ operator to a ’-’ operator regardless for integer and floating point

numbers.
REDIRECT BRANCH Negate the result of the branching condition before branching. Redirecting the control flow by negating the result of the condition before branch-

ing.
DELETE FUNCTION ARGUMENT Mutating all functions in (only) cpp files that receive a pointer type function

argument to achieve double delete and possibly illegal memory access errors. N.B.
- Can possibly lead to a memory leak when delete is called for arrays instantiated
with new[]

We check for functions that receive a pointer type argument. Before returning at
the end of the function, one argument per mutant is deleted.

DELETE STORE PATTERN Deletes all store instructions one by one to simulate a forgotten variable assign-
ment.

Find a store instruction and delete it. As there are no further dependencies on the
store, there is nothing else to do.

DELETE CALL INSTRUCTION PAT-
TERN

Deletes all call instructions without return value assignment one by one to simulate
a forgotten call to a function.

Find a call instruction without return value assignment and delete it. As there are
no further dependencies on the call instruction, there is nothing else to do.

REASSIGN STORE INSTRUCTION Reassigns the value of a previous store with the same type in this store. Checks if in this basic block is another store with the same types used and assigns
the first operand of the previous store to the memory location denoted by the
second operand of the store we are currently at.


	Introduction
	Technical Background
	Coverage Criteria for Fuzzer Comparison
	Benchmarks Using Curated Faults
	Mutation Analysis
	Computational Requirements
	Residual Defects
	Design of Mutation Operators
	Equivalent Mutants


	Approach
	Selecting Mutation Operators
	Detecting Mutations
	Reducing Computational Requirements

	Implementation
	Evaluation
	Setup
	RQ1: How do different fuzzers compare?
	Manual Analysis of Mutations

	RQ2: Evaluating the sanitizer contribution
	RQ3: Mutant and Vulnerability Coupling

	Discussion
	Limitations and Future Work
	Related Work
	Conclusion
	Appendix
	Supplements for Evaluation
	Supplements for Approach


