
Does Choice of Mutation Tool Matter?

Rahul Gopinath∗, Iftekhar Ahmed†, Amin Alipour‡, Carlos Jensen§, and Alex Groce¶
Department of EECS, Oregon State University

Email: ∗gopinatr@oregonstate.edu, †ahmed@eecs.orst.edu, ‡alipour@eecs.orst.edu, §cjensen@eecs.orst.edu, ¶agroce@gmail.com

Abstract—Though mutation analysis is the primary means
of evaluating the quality of test suites, though it suffers from
inadequate standardization. Mutation analysis tools vary based
on language, when mutants are generated (phase of compila-
tion), and target audience. Mutation tools rarely implement the
complete set of operators proposed in the literature, and most
implement at least a few domain-specific mutation operators.
Thus different tools may not always agree on the mutant kills
of a test suite, and few criteria exist to guide a practitioner in
choosing a tool, or a researcher in comparing previous results.

We investigate an ensemble of measures such as traditional
difficulty of detection, strength of minimal sets, diversity of
mutants, as well as the information carried by the mutants pro-
duced, to evaluate the efficacy of mutant sets. By these measures,
mutation tools rarely agree, often with large differences, and the
variation due to project, even after accounting for difference due
to test suites, is significant. However, the mean difference between
tools is very small indicating that no single tool consistently skews
mutation scores high or low for all projects.

These results suggest that research using a single tool, a
small number of projects, or small increments in mutation score
may not yield reliable results. There is a clear need for greater
standardization of mutation analysis; we propose one approach
for such a standardization.

I. INTRODUCTION

Mutation analysis [1], [2] is one of the best known methods
for evaluating the quality of a test suite. Traditional mutation
analysis involves exhaustive generation of first order faults,
under the assumption that programmers make simple mistakes
(the competent programmer hypothesis), and any larger faults
can be found by tests able to detect simpler faults (the coupling
effect).

The ability of a test suite to signal a failure for the mutated
program is taken as its effectiveness in preventing faults in
a program. Mutation analysis has been validated many times
in the past. Daran et al. [3] Andrews et al. [4], [5], Do et
al. [6], and more recently Just et al. [7] suggest that failures
generated by mutants resemble failures from real faults, that
mutation analysis is capable of generating faults that resemble
real bugs, that the ease of detection for mutants is similar to
that for real faults, and that the effectiveness of a test suite in
detecting real faults is reflected in its mutation score.

These qualities have led developers to create a large
number of mutation analysis tools [8], [9], with different
tools for different languages, virtual machines, and introducing
mutations at various stages — including design level and
specification [10], [11], directly from source code [12], [13],
abstract syntax tree [14]–[16], intermediate representation [17],
byte code of various virtual machines [18], [19], and even

machine code [20]. This also means that there is often no direct
translation between modifications carried out at a later phase
to an earlier phase1, or a direct first-order translation between
an earlier phase and a later one2. Tools may also choose
to implement uncommon domain-specific mutation operators
such as those targeting multi-threaded [22] code, or using
memory-related [23] operators, higher order mutations [13],
object-oriented operators [24], [25], or database-targeting op-
erators [26].

Further, it is well known that not all mutants are similar in
their fault emulation capabilities [27]–[29], with a number of
redundant mutants that tend to inflate the mutation score [30],
[31], an unknown number of equivalent mutants that can
deflate the mutation score [32]–[36], a large number of easy
to detect mutants, and a few stubborn mutants that are hard to
find [37].

This presents a predicament for the practicing tester. Which
tool should one use to evaluate quality of one’s test suites?
How good is a new mutation analysis tool? For the researcher,
the challenge is how to compare the results of studies evaluated
using different tools. This paper aims to provide guidance in
how to resolve these dilemmas, and also provide a comparative
benchmark for extant tools.

How best to compare the mutants produced by different
tools? A naive answer to that question may be to consider
the mutation scores obtained by different tools on similar
subjects, and assume the mutation tools that produced the
lowest scores produced the hardest to find mutants, which are
hence better (in some sense). However, this criteria fails to
account for problems due to equivalent mutants (which are
undetectable, and hence skews in favor of tools that produce
a large number of equivalent mutants) and also ignores the
variation in detection capabilities of tests. This method is
strongly influenced by tests that can kill a large number of
mutants, especially since only the first test to kill a mutant
is taken into account. Note that any large set of mutants can
be reduced to a much smaller number by sampling without
significant loss of efficacy [38], while selective mutation has
questionable benefits at best [39]. Hence generating a smaller
number of mutants is in itself not necessarily a desirable
attribute.

Traditionally, the evaluation criteria for a set of mutants
(part of a larger set) is to evaluate the effectiveness of a

1 Very often, a single high level statement is implemented as multiple
lower level instructions. Hence a simple change in assembly may not have an
equivalent source representation. See Pit switch mutator [21] for an example
which does not have a direct source equivalent.

2 See Pit return values mutator [21] for an example where first order source
changes imply much larger bytecode changes.

minimal test suite that is adequate for the subset on the full
set. If a minimal test suite that is able to kill all mutants in
the subset can also kill all mutants in the full set, the subset is
deemed to be equal in effectiveness, or the mutation score of
the minimum test suite is taken as its (reduced) effectiveness.
The problem with extending it to mutants from different tools
is that it requires a superset with which to compare for a
standardized effectiveness measure. Since the mutants being
compared are not necessarily just first order mutants, the
superset is the full set of faults a program can have, which
is effectively infeasible to evaluate.

Previous comparisons of mutation tools [9], [40]–[42] have
focused on syntactic features, the number of mutants produced
and tool support, with few considering the actual semantic
characteristics of mutants. Mutant semantics assumes new
importance in the wake of recent questions regarding the
efficacy of various mutation tools [43]–[45].

We benchmark multiple tools using an ensemble of mea-
sures from different fields. We use raw mutation scores
(without removing non-detected mutants first — which may
be subject to skew due to equivalent mutants) and refined
mutation scores (removing non-detected mutants which may
contain equivalent mutants), and compare the scores produced
by different random subsets of test suites. Next we consider
the strength3 of mutants produced, using the minimal set of
mutants [46] as a measure of utility of a mutant set, and also
a slightly relaxed criterion — using non-subsumed (we call
these surface mutants) mutants rather than a minimal set for
comparison. We then measure the diversity4 of a set of mutants
using statistical measures such as sum of covariance (which
we have shown previously [38] to be related to the sample
size required for any set of mutants for accurate estimation of
mutation score), and the mutual information of mutants (which
measures the redundancy of a mutant set). Finally, consider
that a test suite is often considered to be one of the ways
to specify the program behavior [47]. The quality of the test
suite is defined by how much of the specification it is able to
accurately provide and verify [48], [49]. Hence a set of mutants
of a program may be considered to be representing the program
behavior with respect to the possibilities of deviation, and the
information carried by a set of mutants is a reasonable measure
of quality. We use entropy as a measure of the information
content of a set of mutants. We also evaluate whether the
number of mutants used has an impact on the scores by using a
constant number of mutants (100 mutants sampled 100 times)
in each measurement. We further evaluate whether the phase
of generation (source or bytecode) or the audience targeted
(industry or research) has an impact on the measures since
these are seen as causes for variation [44].

3 For any set of mutants, the strength of a test suite required to detect
them depends on the number of non-redundant mutants within that set. Thus
for this paper, we define the strength of a set of mutants as the number of
non-redundant mutants within that set.

4 We define diversity of a set of mutants to be how different are two random
mutants are from each other in terms of the test cases that kills them. It is
related, but not same as the strength of a set of mutants. For example, a set of
mutants and test cases that kills them is {(m1, t1), (m2, t2)}, while another
is {(m1, t1), (m2, t2), (m3, t3)}. Both have same diversity, but different
strength.

Our evaluation suggests that there is often a wide variation in
the mutation scores for mutants produced by different tools
(low correlation by R2 and τb). However, there is very little
difference in mean across multiple projects.

Researchers [50]–[53] often rely on the difference of a few
percentage points to evaluate the adequacy or superiority of a
technique. Hence, for a standardized measure, we expect the
variance from the tools to be much less than a percentage
(ideally it should be exactly the same irrespective of the tool
used).

Comparing the quality of mutants produced, there is some
variation between tools, with Pit producing the most diverse
and strongest set of mutants. However, the difference with
other tools is often very small. We also note that project is
a significant variable on all measures, generally larger than
the impact of tool, phase of generation or target audience,
even after accounting for the variability due to difference of
test suites (same test suites are used for all tools) and number
of mutants. This suggests that the characteristics of individual
projects have a larger impact on the mutants produced than
the tool used.

It is worrying that the quality of mutants and mutation
score varies so much across tools. Hence publications that
use a limited number of projects, or those that rely on a few
percentage points of improvement suffer a considerable threat
to validity. However, the danger is lower if the study uses
a larger number of projects and the effect size detected was
larger than a few percentage points.

The rest of this paper is organized as follows. The previous
research that is related and relevant to ours is given in Sec-
tion II. Section IV details the different measures we evaluated.
Our methodology is given in Section III, and its implications
are discussed in Section V. Threats to validity of our research
is discussed in Section VI, and we summarize our research in
Section VII.

II. RELATED WORK

The idea of mutation analysis was first proposed by Lip-
ton [1], and its main concepts were formalized by DeMillo
et al. in the “Hints” [54] paper. The first implementation of
mutation analysis was provided in the PhD thesis of Budd [55]
in 1980.

Previous research on mutation analysis suggests that it
subsumes different coverage measures, including statement,
branch, and all-defs dataflow coverage [56]–[58]. There is also
some evidence that the faults produced by mutation analysis
are similar to real faults in terms of error trace produced [3]
and the ease of detection [4], [5]. Recent research by Just
et al. [7] using 357 real bugs suggests that mutation score
increases with test effectiveness for 75% of the cases, which
was better than the 46% reported for structural coverage.

The validity of mutation analysis rests upon two funda-
mental assumptions: “The competent programmer hypothesis”
– which states that programmers tend to make simple mistakes,
and “The coupling effect” – which states that test cases capable
of detecting faults in isolation continue to be effective even

TABLE I: Mutation data from Delahaye et al. [9]

Subject programs, test suites and mutation scores

Project TestSuite Judy Major Pit Jumble Javalanche
codec1.5 380 78.33 70.49 91.35 84.94
codec1.7 519 81.42 72.52 88.23 76.98
codec1.6 1973 72.17 85.54 79.99
jdom2 1813 71.83 82.24 44.99
jopt-simple 677 87.36 80.27 94.62 43.67 83.00
json-simple 3 51.85 21.37 58.52 53.90 68.00

Number of mutants

Project Judy Major Pit Jumble Javalanche
codec1.5 5302 5809 1826 1082
codec1.7 7206 6922 2651 1525
codec1.6 19472 9544 4657
jdom2 6699 4978 1958
jopt-simple 1060 674 539 229 100
json-simple 677 1783 393 141 100

when faults appear in combination with other faults [54]. Evi-
dence of the coupling effect comes from theoretical analysis by
Wah [59], [60], and empirical studies by Offutt [61], [62] and
Langdon [63]. While the competent programmer hypothesis is
harder to verify, the mean syntactic difference between faults
was quantified in our previous work [64].

One theoretical (and practical) difficulty in mutation anal-
ysis is identifying equivalent mutants — mutants that are syn-
tactically different, but semantically indistinguishable from the
original program, leading to incorrect mutation scores, because
in general, identifying equivalent mutants is undecidable. The
work on identifying equivalent mutants is generally divided
into prevention and detection [36], with prevention focusing
on reducing the incidence of equivalent mutants [37] and
detection focusing on identifying the equivalent mutants by
examining their static and dynamic properties. These include
efforts to identify them using compiler equivalence [33], [36],
[65] dynamic analysis of constraint violations [35], [66], and
coverage [34].

A similar problem is that of redundant mutants [30], where
multiple syntactically different mutants represent a single fault,
resulting in a misleading mutation score. A number of studies
have measured the redundancy among mutants. Ammann et al.
[46] compared the behavior of each mutant under all tests and
found a large number of redundant mutants. More recently,
Papadakis et al. [36] used the compiled representation of
programs to identify equivalent mutants. They found that on
average 7% of mutants are equivalent and 20% are redundant.

Another fruitful area of research has been reducing the
cost of mutation analysis, broadly categorized as do smarter,
do faster, and do fewer by Offutt et al. [67]. The do smarter
approaches include space-time trade-offs, weak mutation anal-
ysis, and parallelization of mutation analysis. The do faster
approaches include mutant schema generation, code patching,
and other methods to make the mutation analysis faster as
a whole. Finally, the do fewer approaches try to reduce the
number of mutants examined, and include selective mutation
and mutant sampling.

Various studies have tried to tackle the problem of approx-
imating the full mutation score without running a full mutation
analysis. The idea of using only a subset of mutants (do fewer)
was conceived first by Budd [56] and Acree [68] who showed
that using just 10% of the mutants was sufficient to achieve
99% accuracy of prediction for the final mutation score. This
idea was further investigated by Mathur [69], Wong et al. [70],
[71], and Offutt et al. [72] using the Mothra [73] mutation
operators for FORTRAN.

Barbosa et al. [29] provides guidelines for operator selec-
tion, such as considering at least one operator in each mutation
class, and evaluating empirical inclusion among the operators.
Lu Zhang et al. [50] compared operator-based mutant selec-
tion techniques to random mutant sampling, and found that
random sampling performs as well as the operator selection
methods. Lingming Zhang et al. [51] compared various forms
of sampling such as stratified random sampling based on
operator strata, stratified random sampling based on program
element strata, and a combination of the two. They found
that stratified random sampling when strata were used in
conjunction performed best in predicting the final mutation
score, and as few as 5% of mutants was a sufficient sample
for a 99% correlation with the actual mutation score. The
number of samples required for larger projects were found to
be still smaller [74], and recently, it was found [38] that 9, 604
mutants were sufficient for obtaining 1% accuracy for 99% of
the projects, irrespective of the independence of mutants, or
their total population.

A number of researchers have tried to approximate muta-
tion score. Gligoric et al. [52] found that branch coverage is
closely correlated with mutation score. Cai et al. [75] found
that decision coverage was closely correlated with mutation
coverage. Namin et al. [76] found that fault detection ratio
was well correlated with block coverage, decision coverage,
and two different data-flow criteria. Our own analysis [53] of
232 projects using both manually generated test suites and
test suites generated by randoop suggests that, of the different
coverage criteria we tested — statement, branch, and path —
statement coverage had the closest correlation with mutation
score.

Researchers have evaluated different mutation tools in the
past. Delahaye et al. [9] compared tools based on fault model
(operators used), order (syntactic complexity of mutations),
selectivity (eliminating most frequent operators), mutation
strength (weak, firm, and strong), and the sophistication of
the tool in evaluating mutants. The details of subject programs
and mutations are given in Table I5, and the correlations found
(computed by us using the reported data in the paper) are given
in Table II.

Our evaluation differs from their research in focusing on
the semantic impact of mutants produced by different tools.

5 Note that the LOC given by Delahaye et al. is ambiguous. The text
suggests that the LOC is that of the program. However, checking the LOC
of some of the programs such as jopt-simple and commons-lang suggests that
the given LOC is that of the test suite (and it is reported in the table as details
of the test suite). Hence we do not include LOC details here.

TABLE II: Correlation for the mutation scores — Data from
Delahaye et al. [9]

R2 τb %Difference µ σ
Jumble× Judy 0.15 -0.33
Jumble×Major 0.16 -0.33 -0.70 26.10
Jumble× Pit 0.26 0.07 -19.34 19.80
Judy ×Major 1.00 1.00
Judy × Pit 0.98 0.67
Major × Pit 0.96 0.60 -18.64 9.70

TABLE III: Subject programs, test suite size and mutation
scores

Project TestSuite Judy Major PIT
annotation-cli 126.00 42.42 43.27 59.38
asterisk-java 214.00 13.54 21.54 20.64
beanutils 1185.00 50.71 42.69 56.78
beanutils2 680.00 59.47 52.49 61.85
clazz 205.00 24.46 39.45 30.20
cli 373.00 71.17 76.61 86.14
collections 4407.00 76.99 58.63 34.69
commons-codec 605.00 92.72 73.52 82.66
commons-io 964.00 88.38 70.65 77.34
config-magic 111.00 55.19 29.80 60.69
csv 173.00 53.01 68.08 79.68
dbutils 239.00 44.23 65.20 47.34
events 206.00 77.14 70.03 59.95
faunus 172.00 2.55 58.65 49.07
java-api-wrapper 125.00 14.95 84.91 76.03
java-classmate 219.00 66.17 77.23 90.26
jopt-simple 566.00 84.50 79.32 94.50
mgwt 103.00 40.72 6.61 8.85
mirror 303.00 58.73 74.73 75.47
mp3agic 206.00 72.46 51.70 54.51
ognl 113.00 13.96 6.46 56.32
pipes 138.00 65.99 62.64 67.66
primitives 2276.00 93.35 71.33 35.71
validator 382.00 50.27 59.06 68.21
webbit 146.00 73.95 67.17 52.41
µ 569.48 55.48 56.47 59.45
σ 930.91 26.03 21.78 21.68

III. METHODOLOGY FOR ASSESSMENT

Mutation tools vary along different dimensions. As Am-
mann suggests in his keynote [77], tools targeting different
communities tend to have different priorities, with theoretical
completeness a bone of contention between researchers and
industry. Further, mutants in different phases of program
compilation often do not have first order equivalents in other
phases. Hence it is important to ensure that representatives of
as many different dimensions of variation are included.

The major avenues of variation are: variation due to mutant
distribution in individual projects, variation due to the language
used, and variation due to the mutation generation tools used
(especially the phase during which the mutants were pro-
duced). Unfortunately, the language choice is not orthogonal to
other sources of variation. That is, language choice determines
the projects, and the tool being used, which makes it difficult
to compare different tools, and variation introduced due to
projects. Hence, we avoided variation due to languages, and
focused solely on Java projects. Keeping the goal of real world
projects that best represent real world software, we looked for
large Java projects in Github and from Apache foundation, and
selected those that could be compiled and tested successfully
using multiple mutation analysis tools. Thus we found 25
large Java projects from Github [78] and Apache Software

TABLE IV: Number of mutants by tools in subject programs

Project LOC Judy Major PIT
annotation-cli 870.00 777.00 512.00 981.00
asterisk-java 29477.00 12658.00 5812.00 15476.00
beanutils 11640.00 6529.00 4382.00 9665.00
beanutils2 2251.00 990.00 615.00 2069.00
clazz 5681.00 2784.00 2022.00 5165.00
cli 2667.00 2308.00 1411.00 2677.00
collections 25400.00 1006.00 10301.00 24141.00
commons-codec 6603.00 44.00 7362.00 9953.00
commons-io 9472.00 164.00 6486.00 9799.00
config-magic 1251.00 527.00 650.00 1181.00
csv 1384.00 1154.00 991.00 1798.00
dbutils 2596.00 1159.00 677.00 1922.00
events 1256.00 2353.00 615.00 1155.00
faunus 9000.00 3723.00 3771.00 9668.00
java-api-wrapper 1760.00 929.00 611.00 1711.00
java-classmate 2402.00 1423.00 952.00 2543.00
jopt-simple 1617.00 497.00 695.00 1790.00
mgwt 16250.00 1394.00 6654.00 12030.00
mirror 2590.00 1316.00 449.00 1876.00
mp3agic 4842.00 1272.00 4822.00 7182.00
ognl 13139.00 8243.00 5616.00 21227.00
pipes 3513.00 590.00 1171.00 3001.00
primitives 11965.00 14.00 4916.00 11312.00
validator 5807.00 3320.00 3655.00 5846.00
webbit 5018.00 144.00 1327.00 3707.00
µ 7138.04 2212.72 3059.00 6715.00
σ 7471.65 2931.64 2786.07 6369.23

Foundation [79], that had large test suites (Table III).

Note that we have a much larger set of large sized projects
(25 projects with mean 7138 LOC) than previous studies such
as Ammann et al. [46], Sridharan et al. [80], Namin et al. [27],
Zhang et al. [50], all of which use Siemens test suites and
programs (7 projects with mean 312 LOC), Zhang et al. [51]
(7 projects with mean 15083 LOC), and Zhang et al. [74] (12
projects with mean 6209 LOC). While our test suites are small
(mean=569.48,sd=930.908) in comparison to previous studies
using the Siemens test suites6 —
Ammann et al. [46] (mean=3293.714, sd=1588.226), Srid-
haran et al. [80] (mean=3115.286, sd=1572.038), Namin
et al. [27] (mean=3115.286, sd=1572.038), Zhang et
al. [50] (mean=3115.286, sd=1572.038), Zhang et al. [51]
(mean=3115.286, sd=1572.038), and Zhang et al. [74]
(mean=81, sd=29.061), we believe that the number and size
of projects, and the extent of comparison more than makes up
for it.

We started our evaluation with the list of all known tools
for Java which were available (the first mutation system,
JavaMut [82] is no longer available). We also discarded
Insure++ [83] which did not actually implement mutation
testing [84], [85]. The tools we investigated were PIT [18],
Major [16], Judy [41], Javalanche [86], Bacterio [87], Mu-
Java [88], Jumble [19], Jester [89], and Mutator [90]. Our
choice of mutation tools for assessment were driven by three
key concerns: First, each tool had to provide a way to evaluate
the full test suite against each mutant, and obtain the pass or
fail status of each mutant against each test. This eliminated
Mutator, Jester, and Jumble. Second, we had to be able to
get it to work in a distributed cluster, which provided only
command line access. Bacterio could not work in a non GUI

6The Siemens test suite is a curated test suite by researchers [81] that is at
best a questionable representative for real world test suites.

●

●●

Pit

M
ajo

r

Ju
dy

industry

research

byte source
Phase

A
ud

ie
nc

e

Fig. 1: Tools used for benchmark

environment7. While unmodified PIT does not provide the
full test kill matrix, we modified PIT to run the full test
suite against each mutant (as has been done in numerous
studies using PIT), and provide the result. Third, and more
important, the tools had to work with a majority of the projects
and test suites we had. MuJava could not handle package
hierarchies, and an examination of the source code suggested
that fixing this shortcoming was non-trivial. Javalanche had
large problems in analyzing the projects we chose; while we
could get it to work on simple projects, it had problems with
newer projects and Junit libraries. A large number of tests
caused the JVM to either hang or crash, and eliminating these,
the tests that remained were a small fraction of the original test
suites. (We also note that Javalanche was last updated on 2012,
and is not actively developed anymore. Further, Javalanche
adopts only selective mutation, while other tools examined
leave that choice to the tester. Hence we removed both MuJava
and Javalanche from the benchmark. We note that Javalanche
could not complete successfully in a majority of the projects
in the previous comparative study by Delahaye [9]).

Thus we were left with three tools: (1) PIT, which uses byte
code mutation and is a tool used in industry, (2) Judy, which
uses byte code mutation but is mostly used by researchers,
and (3) Major, which uses manipulation of the AST, providing
source-based mutants, and is primarily used by researchers.
Note that as Figure 1 shows, we have a representative for all
variations except (source, industry). We also note that Pit and
Major are polar opposites along both dimensions. We worked
with the authors of each tool to ensure that we had the latest
version (Judy 2.1.x, Major 1.1.5). For each tool, we used the
settings for the maximum number of operators to mutate. In
the case of PIT we extended PIT to provide a more complete
set of mutants; a modification which was later accepted to
the main line (PIT 1.0). (Note that our intent is not to verify
whether historically there were any differences between the
tools, but rather, whether such differences still exist — which
is what concerns a practitioner).

Unlike other structural coverage measures such as state-
ment, branch or path coverage, there is very little agreement
on what constitutes an acceptable set of mutants in mutation
analysis. This means that we can expect a wide variation in the
number of mutants produced. The mutants produced by each
tool for each program is given in Table IV. A histogram of

7Even though a script mode is available, it still requires GUI to be present,
and communication with its authors did not produce any assistance on this
point.

the mutants by each tool is given in Figure 2. Unfortunately,

●● ●

●●

●

Pit

Major

Judy

0 2500 5000 7500 10000 12500
Tool

M
ut

an
ts

tool Pit Major Judy

Fig. 2: Number of mutants produced by different tools across
all projects in our sample. Judy produces the smallest

number, while Pit produces the largest number of mutants.
The cross in the center is the mean while the central black

line is the median.

this also means that the mutation scores do not necessarily
agree as we see in Table III. One of the culprits is the
presence of equivalent mutants — mutants that do not produce
a measurable semantic variation to the original program. There
is no foolproof way of separating equivalent mutants from the
merely stubborn mutants at this time. Hence, to avoid skewing
the results due to the presence of equivalent mutants, the best
one can do is to remove the non detected mutants completely,
and assume that if a tool produces a significant number of
stubborn mutants that the test suite was inadequate to detect,
these would also be reflected in the population of mutants that
were killed by a small number of mutants. Hence, we removed
the mutants that were not killed by any of the test cases we had,
to avoid the impact of equivalent mutants, as done in similar
studies [27], [50], [51], [74]. We call the original set the raw
mutants, and the set of mutants after removing undetected ones
the refined mutant set.

The sampling was conducted in two dimensions. First, we
sampled the test cases of each project randomly in increasingly
smaller fractions { 12 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64}. For each fraction, we

took 100 samples (that is, using full mutants, but with 1
2 the

number of test cases of the full suite, 1
4 the number of test cases

of the full suite etc.), and the mutation score was computed for
each. Second, we sampled 100 mutants each from the refined
set of mutants for each project. This was again done 100 times
(using the complete test suite for each project). That is, the
effective size of sampling was 10, 000 which is large enough
for sufficient accuracy as recommended in our previous study
on mutant sampling [38].

IV. MEASURES

We considered multiple measures that can lead to insights
about the characteristics of mutants

A. Raw mutation score

Simple mutation scores are one of the traditional means
of comparison between tools, with tools producing low mean
scores deemed to have created hard to detect, and hence good
mutants. We use different visualizations to inspect the distribu-
tion of mutation scores. Figures 3 and 4 show the distribution
of mutation score, and the mean values respectively. Note that
this is for raw mutants (without removing equivalent mutants

annotation−cli

asterisk−java

beanutils

beanutils2

clazz

cli

collections

commons−codec

commons−io

config−magic

csv

dbutils

events

faunus

java−api−wrapper

java−classmate

jopt−simple

mgwt

mirror

mp3agic

ognl

pipes

primitives

validator

webbit

0.00 0.25 0.50 0.75
Project

M
ut

at
io

n
sc

or
e

tool Pit Major Judy

Fig. 3: Distribution of raw mutation score by different tools:
mutation scores from different tools rarely agree, and none of

the tools produce a consistently skewed score compared to
the other tools.

Pit

Major

Judy

0.00 0.25 0.50 0.75
Project

M
ut

at
io

n
sc

or
e

tool Pit Major Judy

Fig. 4: Mean raw mutation score produced by different tools.
Mutation scores produced by different tools are on average
not consistently skewed compared to other tools. This could

suggest that the strength of mutants produced are comparable
on average.

and sampling). The correlations between mutation tools are
given in Table V.

We rely on two different correlations here: The first is R2,
which suggests how close variables are linearly. R2 (Pearson’s
correlation coefficient) is a statistical measure of the goodness
of fit, that is, the amount of variation in one variable that
is explained by the variation in the other. For our purposes,
it is the ability of mutation scores produced by one tool to
predict the score of the other. We expect R2 = 1 if either
A) scores given by both tools for same program are the
same, or B) they are always separated by same amount. The
Kendall’s τb is a measure of monotonicity between variables
compared, measuring the difference between concordant and
discordant pairs. Kendall’s τb rank correlation coefficient is a
non-parametric measure of association between two variables.
It requires only that the dependent and independent variables

TABLE V: Correlation between mutation tools

R2 τb %Difference µ σ
Judy × Pit 0.37 0.27 -3.97 26.93
Judy ×Major 0.52 0.41 -0.99 23.72
Pit×Major 0.67 0.54 2.98 17.53

(here mutation scores from two different tools) are connected
by a monotonic function. It is defined as

τb =
concordant pairs− discordant pairs

1
2n(n− 1)

R2 and τb provide information along two different di-
mensions of comparison. That is, R2 can be close to 1 if
the scores from both tools are different by a small amount,
even if there is no consistency in which one has the larger
score. However, such data would result in very low τb, since
the difference between concordant and discordant pairs would
be small. On the other hand, say the mutation scores of one
tool is linearly proportional to the test suite, while another
tool has a different relation to the test suite – say squared
increase. In such a case, the R2 would be low since the relation
between the two tools is not linear, while τb would be high.
Hence both measures provide useful comparative information.
Note that low τb indicates that the troubling situation in
which tools would rank two test suites in opposite order of
effectiveness is more frequent — this could lead to a change
in the results of software testing experiments using mutation
analysis to evaluate techniques, just by changing the tool used
for measurement.

We also provide the mean difference between the mutation
scores measured (denoted by Difference µ in the table), and
the standard deviation (denoted by σ in the table) for this
measurement. The mean difference is important as it provides
the effect size — the consistent difference between mutation
scores produced by two tools if they have a high correlation
and a low spread (standard deviation). That is, even if two tools
are found to be different with statistical significance8, they
may not be practically different if the mean difference is in
low percentages. Similarly a large spread (standard deviation)
indicates that there is a wide variation in the difference, while
a small spread indicates that the mean difference is consistent
across samples.

A few observations are in order. The first is that the
correlation between the mutation scores from different tools
is weaker than we expected for a standard measure. However,
the mean difference in mutation scores is less than 4% (paired
t − test p < 0.05). The standard deviation is high, indicating
a large spread.

Q: Does the phase of generation or target audience have an
impact?

To answer this question, we rely on analysis of vari-

8Statistical significance is the confidence we have in our estimates. It says
nothing about the effect size. That is, we can be highly confident of a small
consistent difference, but it may not be practically relevant.

TABLE VI: Model Fit – mutation score for raw mutants

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2.62 0.11 4.12 0.0000
phase 1 0.00 0.00 0.06 0.8034
Residuals 49 1.30 0.03

Model fit with phase R2 =0.5

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2.62 0.11 4.18 0.0000
audience 1 0.02 0.02 0.77 0.3836
Residuals 49 1.28 0.03

Model fit with audience R2 =0.507

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2.62 0.11 4.10 0.0000
tool 2 0.02 0.01 0.40 0.6713
Residuals 48 1.28 0.03

Model fit with tool R2 =0.497

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2.62 0.11 4.20 0.0000
Residuals 50 1.30 0.03

Base model fit R2 =0.509

ance (ANOVA). By running ANOVA9 on a model containing
project, phase and audience we determine whether the factor
considered has an impact in predicting mutation score. The
ANOVA equations in general are given in Equation 1, where
we compare the ability of each model to predict the variability
in the measure being analyzed. In this case the measure is raw
mutation score.

µ{Measure|Project, Phase}= Project+ Phase
µ{Measure|Project, Audience}= Project+Audience

µ{Measure|Project, Tool}= Project+ Tool
µ{Measure|Project}= Project

(1)

However, as Table VI shows, ANOVA suggests that there is
no evidence that a complex model containing either of the
variables phase or audience contributes to a better model fit.

B. Refined mutation scores after eliminating undetected mu-
tants

The problem with equivalent mutants is that, without iden-
tifying them, the true mutation score can not be determined.
This means that the premise of mutation analysis — an
exhaustive analysis of all faults implies an exhaustive analysis
of all failures — can not be fulfilled. Many researchers [27],
[50], [51], [74] opt to use a lower bound instead, removing
all the mutants that are undetected to remove any influence
equivalent mutants have. We take the same route. First, we
remove the mutants that were not detected from our pool,
leaving mutants that were detected by at least one test case.
Next, we sample progressively smaller fractions of test suites,

9 Analysis of variance — ANOVA — is a statistical procedure used to
compare the goodness of fit of statistical models. It can tell us if a variable
contributes significantly (statistical) to the variation in the dependent variable
by comparing against a model that does not contain that variable. If the p-
value — given in tables as Pr(> F) — is not statistically significant, it is
an indication that the variable contributes little to the model fit. Note that the
R2 reported is adjusted R2 after adjusting for the effect of complexity of the
model due to the number of variables considered.

TABLE VII: Correlation between mutation tools for refined
mutants (1

2x test suite sample)

Tool R2 τb %Difference µ σ TestSuite
Judy × Pit 0.55 0.41 1.07 11.94 1/2

Judy ×Major 0.54 0.42 0.92 12.16 1/2
Pit×Major 0.66 0.44 -0.16 7.74 1/2
Judy × Pit 0.56 0.44 3.14 15.76 1/4

Judy ×Major 0.63 0.47 2.22 14.70 1/4
Pit×Major 0.61 0.45 -0.92 11.37 1/4
Judy × Pit 0.52 0.42 3.07 19.78 1/8

Judy ×Major 0.61 0.49 1.82 18.26 1/8
Pit×Major 0.62 0.49 -1.25 12.70 1/8
Judy × Pit 0.47 0.35 3.10 19.57 1/16

Judy ×Major 0.61 0.46 1.41 17.28 1/16
Pit×Major 0.63 0.50 -1.69 12.63 1/16
Judy × Pit 0.52 0.39 0.67 17.27 1/32

Judy ×Major 0.63 0.48 -0.69 15.64 1/32
Pit×Major 0.69 0.52 -1.36 10.65 1/32
Judy × Pit 0.51 0.38 0.35 14.22 1/64

Judy ×Major 0.57 0.44 -0.53 13.39 1/64
Pit×Major 0.65 0.50 -0.88 9.72 1/64

with 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 and 1

64 of the original test suite randomly
sampled. This is repeated 100 times, and the mutation scores
of each sample is taken. The mutation scores using randomly
sampled fractions of the original test cases are given in
Table VII.

Figure 5 visualises the relationship of mutation scores
by different tools. In the figure, the fraction of test suite
determines the darkness of the point, and we can see that the
light colors cluster near the origin, while darker colors cluster
around unity as one would expect (larger fractions of test suite
will have higher mutation scores).

The refined mutation scores produced after removing the
undetected mutants also tend to follow the same pattern. In
Table VII, we see that the maximum R2 is 0.69, with high
spread. Further, maximum Kendall’s τb is 0.52. This suggests
that the mutation scores often do not agree. However the
mean difference in mutation score is still less than 3%, which
suggests that none of the different tools produce mutants with
consistently higher or lower mutation scores than others.

Q: Does the phase of generation or target audience have an
impact?

To answer this question, we rely on analysis of vari-
ance(ANOVA) for which the models are given in Equation 1.
The measure to be explained by the models is refined mutation
score. The analysis of variance in Table VIII suggests that there
is no evidence that phase and audience contribute towards
model fit.

C. Minimal set of mutants

One of the problems with mutation analysis is that a
number of faults map to the same failure. This leads to
redundant mutants which may inflate the mutation score of a
program if any one of them is killed, thus skewing the results.
Ammann et al. [46] came up with a practical means of avoiding
the effects of redundant mutants. They make use of the concept
of dynamically subsuming mutants. A mutant is dynamically
subsumed by another if all the tests that detect the former is
guaranteed to detect the later — which in effect means that
the later is weaker than the former. A minimal test suite for a
set of mutants is any test suite from which removing even a

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●●●

●●●

●

●

● ●

●●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●● ●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Pit

Ju
dy

Pit and Judy

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●

● ●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●
●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Pit

M
aj

or

Pit and Major

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

●●●

●●●

●

●

●●

●●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●● ●

●

●

●●●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Major

Ju
dy

Major and Judy

Fig. 5: The mutation scores of different tools plotted against each other for different fractions of the full test suite. The
mutation score at larger fractions of the full test suites are colored darker.

TABLE VIII: Model fit with refined mutation score after
removing undetected mutants

Df Sum Sq Mean Sq F value Pr(>F)
project 24 34.15 1.42 21.33 0.0000
phase 1 0.00 0.00 0.01 0.9084
Residuals 4474 298.41 0.07

Model fit with phase R2 =0.098

Df Sum Sq Mean Sq F value Pr(>F)
project 24 34.15 1.42 21.35 0.0000
audience 1 0.22 0.22 3.25 0.0715
Residuals 4474 298.20 0.07

Model fit with audience R2 =0.098

Df Sum Sq Mean Sq F value Pr(>F)
project 24 34.15 1.42 21.35 0.0000
tool 2 0.27 0.14 2.04 0.1306
Residuals 4473 298.14 0.07

Model fit with tool R2 =0.098

Df Sum Sq Mean Sq F value Pr(>F)
project 24 34.15 1.42 21.34 0.0000
Residuals 4475 298.42 0.07

Base model fit R2 =0.098

single test case causes the mutation score to drop. Using these
two concepts, Ammann et al. [46] defined the minimal set of
mutants as the set of non-subsuming mutants that require a
minimal test suite that is capable of killing the complete set
of mutants. That is, the minimal set of mutants is as effective
as the full set of mutants, and hence may be considered as a
reasonable measure of the effectiveness of a set of mutants.

Figure 6(a) provides the mean and variance for the size
of minimum mutant set for complete projects. The size of
minimal mutant set is given in Table IX and a comparison
between the tools is given in Table X. As the number of
minimal mutants determines the strength of a set of mutants

(a) Full mutant set

● ●● ●●

● ●● ● ●

●

Pit

Major

Judy

0 250 500 750
Minimal Mutants

To
ol

tool Pit Major Judy

(b) 100 mutant sample

●●●●● ●●● ●● ●●●●●●●●●● ●● ●●● ●● ●● ●●●

●●●●●● ●● ●●● ●●● ●●● ●●●● ●●● ●● ●●●● ● ●●●

Pit

Major

Judy

0 25 50 75
Minimal Mutants

To
ol

tool Pit Major Judy

Fig. 6: Minimal mutant sizes between tools

(the factor of reduction is not the important aspect here), we
provide the number rather than the ratio of reduction.

Impact of minimal set: Mutant sets with larger sized minimal
sets are stronger. Hence tools that produces larger sized
minimal sets are better.

Table X suggests that the correlation between different
tools is a maximum of 0.96 (between Pit and Major) which
is very strong. However, Judy and Major have a very low
correlation (0.26). Similarly Kendall’s τb is strong (maximum
0.85 between Pit and Major) suggesting a more conforming

TABLE IX: Minimal set of mutants from different mutation
tools

Project Judy Major Pit
annotation-cli 20.00 20.00 26.00
asterisk-java 121.00 142.00 171.00
beanutils 348.00 344.00 398.00
beanutils2 67.00 105.00 145.00
clazz 18.00 59.00 49.00
cli 106.00 130.00 136.00
collections 130.00 910.00 797.00
commons-codec 4.00 267.00 351.00
commons-io 33.00 477.00 570.00
config-magic 33.00 45.00 49.00
csv 64.00 91.00 99.00
dbutils 73.00 60.00 104.00
events 21.00 10.00 30.00
faunus 7.00 103.00 122.00
java-api-wrapper 10.00 42.00 90.00
java-classmate 98.00 108.00 184.00
jopt-simple 67.00 95.00 131.00
mgwt 55.00 70.00 74.00
mirror 127.00 112.00 173.00
mp3agic 54.00 108.00 116.00
ognl 14.00 27.00 81.00
pipes 29.00 81.00 95.00
primitives 9.00 662.00 445.00
validator 102.00 168.00 204.00
webbit 9.00 59.00 90.00
µ 64.76 171.80 189.20
σ 71.94 215.33 185.83

TABLE X: Correlation between minimal set of mutants from
different mutation tools

R2 τb Difference µ σ
Judy × Pit 0.34 0.34 -124.44 175.05
Judy ×Major 0.26 0.35 -107.04 208.59
Pit×Major 0.96 0.85 17.40 62.86

relationship between Pit and Major.

Q: Does the phase of generation or target audience have an
impact?

We use analysis of variance (ANOVA) to answer this
question, for which models are given in Equation 1. The
measure is the size of minimum mutant set.

The ANOVA (Table XI) suggests that audience is statis-
tically significant (p < 0.05). We note that the full models
explain 46.095% (phase), 49.411% (audience) and 57.987%
(tool) of the variance (R2). Further the difference explained
by phase is 1.083%, that explained by audience is 4.399%
and that explained by tool is 12.976% (difference in R2 from
a model containing only project).

1) What is the impact of tools after controlling the number
of mutants produced?: To answer this question, we sample 100

TABLE XI: Model fit with minimum mutant set

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1440910.19 60037.92 3.59 0.0001
phase 1 33480.54 33480.54 2.00 0.1631
Residuals 49 818380.79 16701.65

Model fit with phase R2 =0.461

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1440910.19 60037.92 3.83 0.0000
audience 1 83827.44 83827.44 5.35 0.0250
Residuals 49 768033.89 15674.16

Model fit with audience R2 =0.494

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1440910.19 60037.92 4.61 0.0000
tool 2 227046.96 113523.48 8.72 0.0006
Residuals 48 624814.37 13016.97

Model fit with tool R2 =0.58

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1440910.19 60037.92 3.52 0.0001
Residuals 50 851861.33 17037.23

Base model fit R2 =0.45

TABLE XII: Minimal set of mutants from different mutation
tools (100-sample)

R2 τb Difference µ σ
Judy × Pit 0.49 0.35 -17.86 17.97
Judy ×Major 0.52 0.40 -15.05 17.49
Pit×Major 0.93 0.73 2.82 7.01

mutants at a time from each project 100 times. Figure 6(b)
provides the mean and variance for the size of minimum
mutant set for complete projects controlling the number of
mutants.

Table XII suggests that the correlation between Pit and
Major is very strong (0.926), and that the correlation between
Judy and Major improved. We find the same with Kendall’s τb,
with strong correlation between Pit and Major (0.73). Finally,
spread is large compared to the mean (except for Pit and
Major).

Q: Does the phase of generation or target audience have an
impact?

We use Equation 1 for analysis of variance between
models, where the measure is the size of minimum mutant
set, after controlling the number of mutants.

The ANOVA (Table XIII) suggests that phase and audience
are indeed statistically significant. We note that the full models
explain 65.31% (phase), 69.365% (audience) and 79.272%
(tool) of the variance (R2). Further the difference explained
by phase is 2.178%, that explained by audience is 6.233%
and that explained by tool is 16.14% (difference in R2 from
a model containing only project).

D. Surface mutants

One of the problems with the minimal set of mutants from
minimal test suites is that it is rather extreme in terms of

TABLE XIII: Model fit with minimal mutant set (100
sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1812892.77 75537.20 569.70 0.0000
phase 1 62358.74 62358.74 470.31 0.0000
Residuals 7474 990978.33 132.59

Model fit with phase R2 =0.653

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1812892.77 75537.20 645.12 0.0000
audience 1 178199.56 178199.56 1521.89 0.0000
Residuals 7474 875137.50 117.09

Model fit with audience R2 =0.694

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1812892.77 75537.20 953.47 0.0000
tool 2 461297.59 230648.79 2911.36 0.0000
Residuals 7473 592039.48 79.22

Model fit with tool R2 =0.793

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1812892.77 75537.20 536.05 0.0000
Residuals 7475 1053337.06 140.91

Base model fit R2 =0.631

(a) Full mutant set

● ●●●

● ●● ● ●

●

Pit

Major

Judy

0 250 500 750 1000
Surface mutants

To
ol

tool Pit Major Judy

(b) 100 mutant sample

●● ●● ●●●●●

●●●

Pit

Major

Judy

0 25 50 75
Surface mutants

To
ol

tool Pit Major Judy

Fig. 7: Surface mutant sizes between tools

reduction. The total number of mutants in a minimal set of
mutants is same as the minimal test suite, and hence is bounded
by the size of the test suite. However, the test suite of most
programs is much smaller than the complete set of mutants.
Hence it may be argued that minimal set of mutants as given
by Ammann et al. [46] may miss actual mutants which map
to different failures than the ones uniquely checked for by
the minimal test suite. To avoid this problem, we relax our
definition of minimality in mutants. That is, we remove the
requirement that we use the minimal test suite before removing

TABLE XIV: Surface set of mutants from different mutation
tools

Project Judy Major Pit
annotation-cli 29.00 20.00 31.00
asterisk-java 148.00 170.00 211.00
beanutils 478.00 428.00 548.00
beanutils2 80.00 105.00 149.00
clazz 24.00 73.00 64.00
cli 157.00 174.00 207.00
collections 148.00 995.00 898.00
commons-codec 6.00 364.00 488.00
commons-io 30.00 552.00 692.00
config-magic 42.00 50.00 60.00
csv 67.00 104.00 139.00
dbutils 78.00 69.00 124.00
events 25.00 22.00 25.00
faunus 8.00 126.00 179.00
java-api-wrapper 12.00 72.00 137.00
java-classmate 116.00 136.00 217.00
jopt-simple 90.00 118.00 177.00
mgwt 58.00 77.00 85.00
mirror 148.00 124.00 205.00
mp3agic 88.00 149.00 160.00
ognl 20.00 39.00 379.00
pipes 41.00 110.00 130.00
primitives 10.00 723.00 685.00
validator 140.00 218.00 273.00
webbit 15.00 69.00 114.00
µ 82.32 203.48 255.08
σ 97.04 237.65 230.22

subsumed mutants, and instead use the results from full test
suite to obtain non-subsumed mutants. Using such a definition,
we have surface mutants, given in Table XIV, and the relation
between different tools is given in Table XV. The mean surface
mutant sizes are plotted in Figure 7(a).

Impact of surface set: Mutant set with a larger surface set
is stronger, and hence tools that produce larger sized surface
sets are better.

Table XV suggests that the R2 correlation between Pit and
Major is strong (0.944), while that between Judy and Pit is
low (0.274), and that between Judy and Major is low (0.25).
Similarly with Kendall’s τb, which ranges from 0.758 to 0.245.
We also note that the values observed are very close to those
observed for minimal mutants, which is as we expect given
that the surface mutants are obtained by a small modification
to the definition of minimal mutants.

Q: Does the phase of generation or target audience have an
impact?

As before, we rely on analysis of variance (ANOVA) to
compare the models (Equation 1 – measure is size of surface
mutants).

TABLE XV: Correlation between surface set of mutants from
different mutation tools

R2 τb Difference µ σ
Judy × Pit 0.27 0.24 -172.76 223.98
Judy ×Major 0.25 0.31 -121.16 233.17
Pit×Major 0.94 0.76 51.60 78.48

TABLE XVI: Model fit for surface mutants

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1967892.21 81995.51 3.19 0.0003
phase 1 20160.81 20160.81 0.78 0.3800
Residuals 49 1258614.53 25686.01

Model fit with phase R2 =0.415

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1967892.21 81995.51 3.76 0.0000
audience 1 209739.21 209739.21 9.61 0.0032
Residuals 49 1069036.13 21817.06

Model fit with audience R2 =0.503

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1967892.21 81995.51 4.44 0.0000
tool 2 393236.03 196618.01 10.66 0.0001
Residuals 48 885539.31 18448.74

Model fit with tool R2 =0.58

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1967892.21 81995.51 3.21 0.0003
Residuals 50 1278775.33 25575.51

Base model fit R2 =0.417

The ANOVA (Table XVI) suggests that audience is sta-
tistically significant. We note that the full models explain
41.455% (phase), 50.273% (audience), and 57.951% (tool), of
the variance (R2). Further, the difference explained by phase
is -0.252%, that explained by audience is 8.566% and that
explained by tool is 16.244% (difference in R2 from a model
that contained only project).

1) What is the impact of tools after controlling the number
of mutants produced?: To answer this question, we sample 100
mutants at a time from each project 100 times. The correlation
between different tools is given in Table XVII. The mean
surface mutant sizes after controlling number of mutants are
plotted in Figure 7(b).

As we expect from the values for minimal mutants, control-
ling the number of mutants have a large impact. Table XVII
suggests that the correlation between Pit and Major is very
strong (0.917), while that between Judy and Major improved,
as did the correlation between Judy and Pit. Similarly for
Kendall’s τb (0.723 to 0.344).

Q: Does the phase of generation or target audience have an
impact?

We rely on analysis of variance (ANOVA) (Equation 1 —
measure is the size of surface mutants after controlling the
number of mutants).

The ANOVA (Table XVIII) suggests that phase and au-
dience are indeed statistically significant. We note that the

TABLE XVII: Correlation between surface set of mutants
from different mutation tools (100 sample)

R2 τb Difference µ σ
Judy × Pit 0.47 0.34 -17.28 18.12
Judy ×Major 0.51 0.39 -14.66 17.69
Pit×Major 0.92 0.72 2.62 7.08

TABLE XVIII: Model fit for surface mutants (100 sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1708095.67 71170.65 539.73 0.0000
phase 1 60356.53 60356.53 457.72 0.0000
Residuals 7474 985549.60 131.86

Model fit with phase R2 =0.641

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1708095.67 71170.65 603.93 0.0000
audience 1 165130.22 165130.22 1401.25 0.0000
Residuals 7474 880775.91 117.85

Model fit with audience R2 =0.679

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1708095.67 71170.65 868.84 0.0000
tool 2 433760.06 216880.03 2647.64 0.0000
Residuals 7473 612146.07 81.91

Model fit with tool R2 =0.777

Df Sum Sq Mean Sq F value Pr(>F)
project 24 1708095.67 71170.65 508.65 0.0000
Residuals 7475 1045906.13 139.92

Base model fit R2 =0.619

full models explain 64.094% (phase), 67.911% (audience), and
77.695% (tool) of the variance (R2). Further, the difference
explained by phase is 2.194%, that explained by audience is
6.011%, and that explained by tool is 15.795% (difference in
R2 from a model that contained only project).

E. Covariance between mutants

We have shown previously [38] that for mutation analysis,
the maximum number of mutants to be sampled for given toler-
ance has an upper bound provided by the binomial distribution.

To recap, let the random variable Dn denote the number of
detected mutants out of our sample n. The estimated mutation
score is given by Mn = Dn

n . The random variable Dn can
be modeled as the sum of all random variables representing
mutants X1..n. That is, Dn =

∑n
i Xi. The expected value of

E(Mn) is given by 1
nE(Dn). The variance V (Mn) is given

by 1
n2V (Dn), which can be written in terms of component

random variables X1..n as:

1

n2
V (Dn) =

1

n2

n∑
i

V (Xi) + 2

n∑
i<j

Cov(Xi, Xj)

Using a simplifying assumption that mutants are more similar
to each other than dissimilar, we can assume that

2

n∑
i<j

Cov(Xi, Xj) >= 0

(a) Full mutant set

● ●●

●● ● ●●

●●●

Pit

Major

Judy

0 25 50 75 100
Sum of covariance

To
ol

tool Pit Major Judy

(b) 100 sample

● ●● ●●●● ●●● ●●● ●●● ●●●●●● ● ●● ●●●●●● ●●● ●●●●●●● ●●● ●●●●● ●●●● ●●●● ●●● ●● ●●●●● ●●●● ●● ●● ●●● ●●●● ●●●● ●●●●●●● ●●●● ●●●

●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●● ●●● ●● ●● ●● ●●● ●●● ●●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●●

● ●

Pit

Major

Judy

0 1 2 3 4
Sum of covariance

To
ol

tool Pit Major Judy

Fig. 8: Covariance between mutants produced

The sum of covariance will be zero when the mutants are
independent. That is, the variance of the mutants V (Mn) is
strictly greater than or equal to that of a similar distribution
of independent random variables.

This means that the covariance between mutants deter-
mines the size of the sample required. That is, the larger
the covariance (or correlation) between mutants, the smaller
the diversity. Hence the sum of the covariance can be used
to measure the independence of the underlying mutants. The
best set of mutants only includes mutants that are completely
independent of each other, and the worst set of mutants only
includes mutants that are completely dependent (redundant).
Figure 8(a) shows the mean covariance across the different
tools.

Impact of sum of covariance: Mutant sets with smaller sum
of covariance are more independent compared to other sets
of similar size, and hence tools that produce mutants with
smaller sum of covariance are better.

Table XIX provides the sum of covariance for different
projects, and Table XX provides the correlation between the
sum of covariance from different tools. Table XX suggests
that in terms of sum of covariance, Judy and Pit are in
closest agreement (0.452), with medium correlation, while the
correlation between other tools is low. However, Kendall’s τb
indicates a medium correlation between all tools (0.427, 0.433,
0.567).

Q: Does the phase of generation or target audience have an
impact?

We rely on analysis of variance(ANOVA) (Equation 1 —
measure is the sum of covariance)

The ANOVA (Table XXI) suggests that audience is sta-

TABLE XIX: Covariance different mutation tools

Project Judy Major Pit
annotation-cli 4.69 2.71 11.27
asterisk-java 0.74 0.44 1.36
beanutils 5.13 1.31 3.77
beanutils2 3.42 1.25 1.56
clazz 22.76 6.86 2.22
cli 1.93 1.04 4.60
collections 0.10 0.20 0.13
commons-codec 0.41 2.34 2.01
commons-io 0.04 0.28 0.38
config-magic 1.59 0.97 4.44
csv 4.38 2.69 5.13
dbutils 0.80 1.40 0.73
events 15.60 4.05 5.32
faunus 0.12 6.79 8.00
java-api-wrapper 0.34 9.59 7.27
java-classmate 4.15 1.68 7.19
jopt-simple 3.86 2.69 9.92
mgwt 1.53 0.54 1.22
mirror 2.64 0.26 2.04
mp3agic 9.09 22.17 30.40
ognl 15.65 1.50 118.63
pipes 2.10 1.00 1.57
primitives 0.03 0.20 0.15
validator 1.02 0.94 5.90
webbit 4.16 13.15 22.53
µ 4.25 3.44 10.31
σ 5.73 5.05 23.64

TABLE XX: Correlation of sum of covariance between
different mutation tools

R2 τb Difference µ σ
Judy × Pit 0.45 0.43 -6.06 21.65
Judy ×Major 0.29 0.43 0.81 6.45
Pit×Major 0.19 0.57 6.87 23.23

tistically significant. We note that the full models explain
13.754% (phase), 18.141% (audience), and 16.517% (tool) of
the variance (R2). Further, the difference explained by phase
is 0.618%, audience is 5.005%, and tool is 3.381% (difference
in R2 from a model that contained only project). We note that
project is not statistically significant.

1) What is the impact of tools after controlling the number
of mutants produced?: To answer this question, we sample 100
mutants at a time from each project 100 times. Figure 8(b)
shows the mean covariance across the different tools after
controlling the number of mutants.

Table XXII provides the correlation between sum of co-
variance from different tools after controlling the number of
mutants. We see that both R2 and τb increases across all
the tools, with the Pit and Major correlation being highest
(0.681), with medium correlation. Similar improvement is also

TABLE XXI: Model fit for covariance

Df Sum Sq Mean Sq F value Pr(>F)
project 24 6407.53 266.98 1.48 0.1229
phase 1 245.55 245.55 1.36 0.2495
Residuals 49 8858.36 180.78

Model fit with phase R2 =0.138

Df Sum Sq Mean Sq F value Pr(>F)
project 24 6407.53 266.98 1.56 0.0945
audience 1 696.10 696.10 4.06 0.0495
Residuals 49 8407.81 171.59

Model fit with audience R2 =0.181

Df Sum Sq Mean Sq F value Pr(>F)
project 24 6407.53 266.98 1.53 0.1057
tool 2 704.28 352.14 2.01 0.1448
Residuals 48 8399.62 174.99

Model fit with tool R2 =0.165

Df Sum Sq Mean Sq F value Pr(>F)
project 24 6407.53 266.98 1.47 0.1261
Residuals 50 9103.91 182.08

Base model fit R2 =0.131

TABLE XXII: Correlation of sum of covariance between
different mutation tools (100 sample)

R2 τb Difference µ σ
Judy × Pit 0.50 0.61 0.34 0.86
Judy ×Major 0.60 0.66 0.29 0.80
Pit×Major 0.68 0.61 -0.05 0.41

seen over Kendall’s τb — highest is between Judy and Major
(0.661).

Q: Does the phase of generation or target audience have an
impact?

We rely on analysis of variance (ANOVA) (Equation 1 —
measure is the sum of covariance after controlling the number
of mutants).

The ANOVA (Table XXIII) suggests that both phase and
audience are statistically significant. We note that the full
models explain 64.725% (phase), 65.786% (audience), and
68.407% (tool) of the variance (R2). Further, the difference
explained by phase is 0.46%, audience 1.522%, and tool
4.142% (difference in R2 from a model that contained only
project). We note that project is statistically significant once
number of mutants is controlled.

F. Mutual information (Total correlation) between mutants

Covariance between mutants is a measure of the quality
of mutants. The more independent mutants are, the lower the
covariance. There is a measure from information theory that
lets us evaluate the redundancy of mutants more directly —
mutual information.

The mutual information of a variable is defined as the
reduction in uncertainty of a variable due to knowledge of

TABLE XXIII: Model fit for covariance (100 sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2320.14 96.67 547.48 0.0000
phase 1 16.69 16.69 94.53 0.0000
Residuals 7174 1266.77 0.18

Model fit with phase R2 =0.647

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2320.14 96.67 564.47 0.0000
audience 1 54.82 54.82 320.09 0.0000
Residuals 7174 1228.64 0.17

Model fit with audience R2 =0.658

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2320.14 96.67 611.28 0.0000
tool 2 149.07 74.54 471.31 0.0000
Residuals 7173 1134.39 0.16

Model fit with tool R2 =0.684

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2320.14 96.67 540.43 0.0000
Residuals 7175 1283.46 0.18

Base model fit R2 =0.643

another. That is, given two variables X and Y, the redundancy
between them is estimated as:

I(X;Y) = I(Y ;X) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p(x)p(y)

)
To extend this to a set of mutants, we use one of the
multivariate generalizations of mutual information proposed
by Watanabe [91] — multi information also called total
correlation. The important aspects of multi information that
are relevant to us are that it is well behaved — that is it allows
only positive values, and is zero only when all variables are
completely independent. The multi information for a set of
random variables xi ∈ X is defined formally as:

C(X1..Xn) =
∑
x1∈X1

..
∑

xn∈Xn

p(x1..xn)log

(
p(x1..xn)

p(x1)..p(xn)

)
Figure 9(a) shows the mean multi information between mutants
produced.

Impact of multi information: Mutant sets with smaller multi
information have more diverse mutants compared to similar
sized mutant sets. Hence tools that produce mutants with
smaller multi information are better.

Table XXIV shows the multi-information of different tools
across projects, and Table XXV provides the correlation of
multi-information by different tools.

Table XXV suggests that the correlation between different
tools is rather weak in terms of both R2 (0.286 to -0.063) and
τb (0.433 to -0.14).

Q: Does the phase of generation or target audience have an
impact?

(a) Full mutant set

●

●● ●

●

Pit

Major

Judy

0 1000 2000
Multi information

To
ol

tool Pit Major Judy

(b) 100 sample

●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●

●●●● ●●●● ●●●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●●●● ●● ●●● ●●●●● ● ●●●●● ●●●●●● ●●●●●●●●● ● ●●● ●●● ●●● ●●●●● ●● ●● ●●●● ●●●●●●●●●●●● ●● ●● ●●●●●● ●● ●●● ●●●● ●●●●● ●●●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●

Pit

Major

Judy

0 20 40
Multi information

To
ol

tool Pit Major Judy

Fig. 9: Multi Information

We rely on analysis of variance (ANOVA) (Equation 1 —
measure is the multi information).

The ANOVA (Table XXVI) suggests audience is the only
statistically significant variable. We note that the full models
explain -0.015% (phase), 18.741% (audience), and 17.519%
(tool) of the variance (R2). Further the difference explained
by phase is -64.28%, audience is -45.524%, and by tool is
-46.745% (difference in R2 from a model that contained only
project).

1) What is the impact of tools after controlling the number
of mutants produced?: To answer this question, we sample
100 mutants at a time from each project 100 times. Figure 9(b)
shows the mean multi information between mutants produced,
after controlling the number of mutants.

Table XXVII provides the correlation of multi-information
by different tools after controlling number of mutants. Ta-
ble XXVII suggests that the correlation between different tools
improves across all tools in terms of both R2 (0.865 to 0.785)
and τb (0.594 to 0.53).

Q: Does the phase of generation or target audience have an
impact?

We rely on analysis of variance (ANOVA) (Equation 1 —
measure is the multi information after controlling the number
of mutants).

The ANOVA (Table XXVIII) suggests both phase, and
audience are statistically significant. We note that the full
models explain 89.572% (phase), 89.551% (audience), and
89.577% (tool) of the variance (R2). Further the difference
explained by phase is 0.06%, audience is 0.039%, and tool is
0.065% (difference in R2 from a model that contained only
project).

TABLE XXIV: Multi information different mutation tools

Project Judy Major Pit
annotation-cli 90.94 58.00 173.20
asterisk-java 130.34 96.99 297.53
beanutils 320.20 150.88 461.81
beanutils2 84.11 37.02 114.10
clazz 159.27 227.02 129.75
cli 202.29 127.75 360.27
collections 13.81 106.72 103.23
commons-codec 2.86 329.49 460.89
commons-io 3.06 140.78 250.94
config-magic 75.37 42.38 185.80
csv 98.43 115.39 271.59
dbutils 46.28 53.06 75.68
events 125.51 35.33 83.69
faunus 3.54 340.23 616.76
java-api-wrapper 9.73 121.26 235.57
java-classmate 118.77 80.57 288.54
jopt-simple 83.76 80.80 301.70
mgwt 79.93 45.56 126.94
mirror 103.04 24.29 169.21
mp3agic 162.77 465.32 677.62
ognl 176.89 43.10 2665.86
pipes 56.44 87.35 225.87
primitives 0.27 137.59 69.53
validator 98.11 178.66 450.97
webbit 31.03 239.10 497.23
µ 91.07 134.59 371.77
σ 75.57 110.12 507.05

TABLE XXV: Multi information correlation of different
mutation tools

R2 τb Difference µ σ
Judy × Pit 0.29 0.19 -280.70 490.79
Judy ×Major -0.06 -0.14 -43.52 137.45
Pit×Major 0.10 0.43 237.19 507.78

G. Entropy carried by mutants

The measures we looked at previously evaluated how
redundant a set of mutants is. Another way to think about
a set of mutants is to think of mutants as expressing all
possible failures of a system. In this sense, the utility of a
set of mutants and test cases is the ability of such a system to
express the possible behaviors of the system (each failure of a
test in a mutant expresses a behavior of the original program).
This suggests that a measure of information contained in the
mutant×test-case matrix can be a good comparative measure
of how good a set of mutants is.

In information theory Shannon entropy [92] is a measure of
the information content in the given data. Entropy is related to
multi information. That is, multi information is the difference
between the sum of independent entropies of random variables

TABLE XXVI: Model fit for multi information

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2457752.40 102406.35 0.98 0.5078
phase 1 156285.44 156285.44 1.49 0.2274
Residuals 49 5125806.30 104608.29

Model fit with phase R2 =0

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2457752.40 102406.35 1.20 0.2840
audience 1 1117537.88 1117537.88 13.15 0.0007
Residuals 49 4164553.86 84990.90

Model fit with audience R2 =0.187

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2457752.40 102406.35 1.19 0.2997
tool 2 1141207.98 570603.99 6.61 0.0029
Residuals 48 4140883.76 86268.41

Model fit with tool R2 =0.175

Df Sum Sq Mean Sq F value Pr(>F)
project 24 2320.14 96.67 540.43 0.0000
Residuals 7175 1283.46 0.18

Base model fit R2 =0.643

TABLE XXVII: Multi information correlation of different
mutation tools (100 sample)

R2 τb Difference µ σ
Judy × Pit 0.86 0.53 0.14 6.48
Judy ×Major 0.85 0.59 -0.42 6.73
Pit×Major 0.78 0.58 -0.56 8.13

TABLE XXVIII: Model fit for multi information (100
sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 980113.02 40838.04 2575.91 0.0000
phase 1 672.77 672.77 42.44 0.0000
Residuals 7174 113735.56 15.85

Model fit with phase R2 =0.896

Df Sum Sq Mean Sq F value Pr(>F)
project 24 980113.02 40838.04 2570.60 0.0000
audience 1 437.78 437.78 27.56 0.0000
Residuals 7174 113970.54 15.89

Model fit with audience R2 =0.896

Df Sum Sq Mean Sq F value Pr(>F)
project 24 980113.02 40838.04 2577.02 0.0000
tool 2 737.74 368.87 23.28 0.0000
Residuals 7173 113670.58 15.85

Model fit with tool R2 =0.896

Df Sum Sq Mean Sq F value Pr(>F)
project 24 980113.02 40838.04 2561.12 0.0000
Residuals 7175 114408.33 15.95

Base model fit R2 =0.895

Full set of mutants

● ●●

●●● ●

Pit

Major

Judy

0 2 4 6
Entropy

To
ol

tool Pit Major Judy

100 sample

●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●●●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●

●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●●●●●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●●● ●●●●●● ●● ●● ●● ●● ●●●● ●● ●●●● ●●●● ●● ●● ●● ●●●● ●● ●● ●● ●●●● ●● ●●●● ●● ●●●●● ● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●● ●● ●● ●● ●● ●● ●● ●

Pit

Major

Judy

1 2 3 4 5
Entropy

To
ol

tool Pit Major Judy

Fig. 10: Entropy

and their joint entropy. Formally,

C(X1..Xn) =

N∑
i=1

H(Xi)−H(X1..Xn)

Another reason we are interested in the entropy of a set
of mutants is that the properties of entropy are also relevant
to how good we judge a set of mutants to be. That is, as we
expect from a measure of quality of a set of mutants, the value
can never be negative (adding a mutant to a set of mutants
should not decrease the utility of a mutant set). Secondly, a
mutant set where all mutants are killed by all test cases has
minimal value (think of a minimal set of mutants for such a
matrix). This is mirrored by the entropy property that I(1) = 0.
Similarly, a mutant set where no mutants are killed by any
test cases is also of no value (again consider the minimal
set of mutants for such a matrix), which is also mirrored by
entropy I(0) = 0. Finally, we expect that if two mutant sets
representing independent failures are combined, the measure
should reflect the sum of their utilities. With entropy, the joint
information of two independent random variables is their sum
of respective informations. Finally, the maximum entropy for
a set of mutants happens when none of the mutants in the set
are subsumed by any other mutants in the set. The entropy of
a random variable is given by I(p) = −plog2(p).

The entropy of the set of mutants produced by each tool
is given in Table XXIX, and the comparison between different
tools in terms of entropy is given in Table XXX. Figure 10(a)
shows the entropy carried by the mutants.

Impact of entropy: Mutation sets with larger entropy carry
more information. Hence tools that produce mutant sets with
larger entropy are better.

TABLE XXIX: Entropy of different mutation tools

Project Judy Major Pit
annotation-cli 2.81 2.69 3.38
asterisk-java 4.37 5.13 5.27
beanutils 5.71 6.37 6.44
beanutils2 3.97 4.13 4.80
clazz 1.06 4.62 3.20
cli 5.27 5.22 5.28
collections 1.51 6.34 4.41
commons-codec 0.23 5.80 6.27
commons-io 1.52 6.35 6.67
config-magic 4.19 4.35 4.41
csv 3.34 4.72 5.06
dbutils 4.10 4.07 4.73
events 3.48 1.95 3.94
faunus 0.35 4.99 4.91
java-api-wrapper 0.72 4.59 4.82
java-classmate 4.01 4.30 5.35
jopt-simple 4.41 4.79 5.34
mgwt 3.79 4.34 4.50
mirror 4.22 4.76 5.63
mp3agic 3.93 5.10 5.15
ognl 0.89 1.82 4.70
pipes 3.53 4.77 4.88
primitives 0.47 6.85 2.87
validator 3.36 5.40 5.62
webbit 1.29 4.42 4.88
µ 2.90 4.71 4.90
σ 1.66 1.23 0.92

TABLE XXX: Entropy correlation of different mutation tools

R2 τb Difference µ σ
Judy × Pit 0.28 0.25 -2.00 1.66
Judy ×Major -0.07 0.01 -1.81 2.13
Pit×Major 0.35 0.41 0.19 1.25

We compare the number of mutants produced by each tool
(Figure 2) and entropy from mutants by each (Figure 10(a)).
As expected, a larger number of mutants can carry more
information.

Q: Does the phase of generation or target audience have an
impact?

We rely on analysis of variance (ANOVA) (Equation 1 —
measure is entropy).

The ANOVA (Table XXXI) suggests that both phase and
audience is is statistically significant, while project is not.
We note that the full models explain 0.661% (phase), 7.956%
(audience), and 40.513% (tool) of the variance (R2). Further
the difference explained by phase is 6.895%, by audience is

TABLE XXXI: Model fit for entropy

Df Sum Sq Mean Sq F value Pr(>F)
project 24 51.89 2.16 0.88 0.6293
phase 1 11.03 11.03 4.47 0.0396
Residuals 49 120.95 2.47

Model fit with phase R2 =0.007

Df Sum Sq Mean Sq F value Pr(>F)
project 24 51.89 2.16 0.95 0.5468
audience 1 19.92 19.92 8.71 0.0048
Residuals 49 112.07 2.29

Model fit with audience R2 =0.08

Df Sum Sq Mean Sq F value Pr(>F)
project 24 51.89 2.16 1.46 0.1298
tool 2 61.04 30.52 20.65 0.0000
Residuals 48 70.95 1.48

Model fit with tool R2 =0.405

Df Sum Sq Mean Sq F value Pr(>F)
project 24 51.89 2.16 0.82 0.6971
Residuals 50 131.99 2.64

Base model fit R2 =-0.062

TABLE XXXII: Entropy correlation of different mutation
tools (100 sample)

R2 τb Difference µ σ
Judy × Pit 0.53 0.40 -1.03 1.17
Judy ×Major 0.54 0.35 -0.92 1.18
Pit×Major 0.69 0.50 0.11 0.74

14.19%, and by tool is 46.747%. (difference in R2 from a
model that contained only project).

1) What is the impact of tools after controlling the number
of mutants produced?: To answer this question, we sample 100
mutants at a time from each project 100 times. Figure 10(b)
shows the entropy carried by the mutants, after controlling the
number of mutants.

Table XXXII provides the correlation of entropy of mutants
produced by different tools for different projects. As in other
statistical measures, we note an across the board improvement
in both correlation measures — R2 (0.688 to 0.533) and τb
(0.501 to 0.354).

Q: Does the phase of generation or target audience have an
impact?

We rely on analysis of variance (ANOVA) (Equation 1 —
measure is entropy after controlling the number of mutants).

The ANOVA (Table XXXIII) suggests that both phase and
audience is is statistically significant. We note that the full
models explain 61.995% (phase), 62.543% (audience), and
73.047% (tool) of the variance (R2). Further the difference
explained by phase is 2.889%, by audience is 3.436%, and by
tool is 13.941%. (difference in R2 from a model that contained
only project).

TABLE XXXIII: Model fit for entropy (100 sample)

Df Sum Sq Mean Sq F value Pr(>F)
project 24 5963.01 248.46 467.59 0.0000
phase 1 290.32 290.32 546.37 0.0000
Residuals 7174 3812.02 0.53

Model fit with phase R2 =0.62

Df Sum Sq Mean Sq F value Pr(>F)
project 24 5963.01 248.46 474.42 0.0000
audience 1 345.22 345.22 659.18 0.0000
Residuals 7174 3757.12 0.52

Model fit with audience R2 =0.625

Df Sum Sq Mean Sq F value Pr(>F)
project 24 5963.01 248.46 659.32 0.0000
tool 2 1399.24 699.62 1856.53 0.0000
Residuals 7173 2703.10 0.38

Model fit with tool R2 =0.73

Df Sum Sq Mean Sq F value Pr(>F)
project 24 5963.01 248.46 434.55 0.0000
Residuals 7175 4102.34 0.57

Base model fit R2 =0.591

V. DISCUSSION

We evaluated an ensemble of measures including tradi-
tional mutation scores, strength of mutants using minimal and
surface mutants, statistical measures of diversity of mutants,
and information content in the mutant kills to find whether
any tool produced mutants that were consistently better than
the others by a meaningful margin.

A. Comparison of difficulty of detection with mutation scores

We include two measures in the traditional comparison; the
raw mutation score (Section IV-A), and the refined mutation
score (Section IV-B). Considering the raw mutation scores that
were reported by different tools, we find that while Pit does
produce a much larger number of mutants than other tools
(Figure 2), and that the mean mutation scores across projects
produced by different tools are quite close (Figure 4). Surpris-
ingly, the correlation between the mutation scores produced
ranges from low (Judy×Pit 0.375) to medium (Pit×Major
0.675). Similarly Kendall’s τb is also low (Judy×Pit 0.273)
to medium (Pit×Major 0.54). We also see a large standard
deviation (up to 26.927 for Judy × Pit).

Our measures of correlation are markedly different from
those obtained from mutation scores reported by Delahaye
et al. (Table II) where the three tools we compare were
found to have high correlation. However, we note that we
have a much larger variety of subject programs, and that the
data from Delahaye et al. is incomplete (only 4 complete
observations with all the three tools under consideration),
which may explain the discrepancy. We also note that the tools
we have not considered — Jumble, and Javalanche — have
even worse correlation with other tools in Delahaye’s data.
(However Madeyski [41] reports that Judy and Jumble had a
high correlation of 0.89). Taken together, this corroborates our
finding that the relationship between tools varies based on the
project being tested.

Our data from raw mutation scores suggests that tools
rarely agree with each other on mutation score, and often differ
by a large amount.

Mutation score from any single tool can be severely mislead-
ing. The scores from different tools sometimes differ by a
large amount.

However, we find no tool consistently under or over re-
porting the mutation scores with respect to what is reported
by other tools.

This suggests two things: (1) mutation score from a single
tool can be severely misleading; (2) there is no single tool that
can be said to produce consistently hard-to-detect mutants or
easy-to-detect mutants.

For raw mutation scores, we do not consider equivalent
mutants. For our second measure (Section IV-B), we removed
all undetected mutants, and for the remaining mutants, evalu-
ated mutation scores produced by partial test suites containing
a fixed fraction of the original test suite. Our results from
refined mutation scores on partial test suites with undetected
mutants removed corroborate our findings with raw mutation
scores. As Table VII shows, the difference between Judy and
Pit reduced for both R2, and τb, while measurements of other
pairings remain very close. The spread, while slightly smaller
than raw mutation scores, still remain high.

Note that mutation score is often the only measure from
a set of mutants that is obtained by testers and researchers
who are interested in the quality of a test suite. Hence,
irrespective of the other measures of quality, the low agreement
between tools for such a standard measure is dishearten-
ing. Interestingly, Pit and Major are polar opposites in both
dimensions we evaluate — phase of generation, and target
audience. However we find that they show a consistently higher
correlation with each other, especially when compared with
Judy, which suggests that at least as far as mutation score
is concerned, the impact of phase of generation and target
audience is minimal.

B. Comparison of mutant strength with minimal mutation sets

The strength of a set of mutants irrespective of the size
of the set provides a good measure of the quality of a set of
mutants. After all, when one uses mutation analysis to choose
test cases, the unique mutants identified are the only factor
that contributes to the quality of the test suite thus chosen.
Mutants produced by various mutation operators often have
a high redundancy, with multiple mutants causing the same
failure. There have been various efforts to reduce the amount of
redundancy in mutants generated. Ammann et al. [46] suggests
that a theoretical limit on such reductions can be obtained
by using a set of minimal mutants such that a test suite that
is able to kill that set of mutants is guaranteed to kill the
full set of mutants. Thus we can consider the minimal set
of mutants to be the actual number of true mutants generated
(avoiding redundant mutants), and hence a reasonable measure
of the quality of a set of mutants. We analysed (Section IV-C)

the minimal mutants from different tools across the subject
programs using both the entire set of mutants, and also
restricting the number of mutants to just 100.

Note that there is a very clear interpretation for the size of
minimum mutant set — the larger the better.

Our results from Section IV-C suggest that the minimal
set of mutants produced by different tools varies widely, from
low (Judy ×Major 0.259) to high (Pit ×Major 0.961).
Kendall’s τb ranges from lowest (Judy × Major 0.346) to
highest (Pit × Major 0.846). We also see the maximum
standard deviation for Judy×Major (208.588). Further, the
mean difference between minimum mutants produced by tools
ranges from Judy × Pit (-124.44) to Pit×Major (17.4).

Interestingly, the situation is different when the number
of mutants is controlled. We see a correlation between the
minimum set from different tools from medium (Judy × Pit
0.486) to high (Pit ×Major 0.926). Similarly Kendall’s τb
is also medium (Judy × Pit 0.351) to high (Pit ×Major
0.73).

It is instructive to think what a high correlation means. It
means that the difference between minimum mutant sets pro-
duced by different tools is consistent. That is, for the tools that
exhibit a high correlation, we can say that a constant number
of mutants picked from one of the tools will consistently be
qualitatively better. The mean difference between minimum
mutants produced by tools ranges from Judy×Pit (-17.865)
to Pit×Major (2.816). That is, in our comparison, the tools
that exhibit high correlation — Pit and Major — differ only
by a mean small amount compared to either the total number
of mutants, or the mean for Judy × Pit.

We find a similar result from our analysis of surface
mutants (Section IV-D). Surface mutants are similar to minimal
set of mutants, but with a small relaxation in their construction
— we do not require that the test suite be minimized. Rather,
we remove all mutants that are dynamically subsumed by
another. This results in a slightly larger, but more accurate es-
timation of redundancy. The measures vary from low (Judy×
Major 0.25) to high (Pit ×Major 0.944). Kendall’s τb is
lowest (Judy × Pit 0.245) to highest (Pit ×Major 0.758).
We also see maximum standard deviation for Judy×Major
(233.169). Further, the mean difference between minimum
mutants produced by tools range from Judy × Pit (-172.76)
to Pit×Major (51.6).

We find a similar result as that of minimal mutants when
the number of mutants is controlled. We see a correlation
between the minimum set from different tools from medium
(Judy × Pit 0.47) to high (Pit ×Major 0.917). Similarly
Kendall’s τb is also medium (Judy×Pit 0.344) to high (Pit×
Major 0.723). Remember that a comparison is reasonable
only for those tools that exhibit a high correlation (otherwise
the results are too dependent on individual projects). As before,
the mean difference between minimum mutants produced by
tools range from Judy×Pit (-17.284) to Pit×Major (2.624).
That is, like in minimum mutants, the tools that exhibit high
correlation — Pit and Major differ only by a mean small
number of mutants on average.

Using strength of mutants measured by minimal and surface
mutant sets, Pit and Major produce high strength mutants, and
differ only by a small amount, with Pit slightly better.

C. Comparison of mutant diversity with statistical measures

We had shown before [38] that sum of covariance of a set
of mutants reduces the fraction of mutants that can represent
the mutation score accurately. A smaller sum of covariance is
strong evidence that one set of mutants is more varied than
a set with a larger sum of covariance if both have a similar
number of mutants.

Our evaluation (Section IV-E) shows that the correlation
between tools for covariance is small (Pit ×Major 0.187)
to (Judy × Pit 0.452). The Kendall τb correlations are
(Judy × Pit 0.427) to (Pit ×Major 0.427). However, this
is as expected. Remember that a larger covariance essentially
means a lower fraction of mutants can represent the full mutant
set. Here, the number of mutants are different, and hence not
really comparable. The interesting part is the mean difference.
That is, if the mutants are comparable we would expect a
larger difference in covariance between Pit and other tools
since it generates a larger set of mutants. Similarly, Major and
Judy should differ little. This is confirmed by our results with
Pit×Major 6.867, Judy× Pit -6.058 and Judy×Major
0.809.

Controlling the number of mutants (either by sampling or
by using average covariance – dividing by number of mutants)
should on the other hand lead to a higher correlation and lower
difference. Our results show that this is as expected (Pit ×
Major -0.053) to (Judy × Pit 0.341).

Our multi information observations (Section IV-F) paint a
similar picture. A low correlation between tools, but larger
difference in mutual information between mutants produced
by tools generating a larger number of mutants and those pro-
ducing a smaller number. (Judy×Pit -280.702 Pit×Major
237.187 and Judy ×Major -43.516).

As before, if the number of mutants is controlled, we have
high correlation (Judy×Pit 0.865) to (Pit×Major 0.785).
and very small mean difference (Judy×Pit 0.143) and (Pit×
Major -0.561).

These measures again show that there is very little differ-
ence between mutants generated by different tools, although
Pit comes out slightly better once the number of mutants is
controlled.

Our statistical measures of diversity of mutants show that once
the number of mutants is controlled, there is little difference
in the diversity of mutants produced by different tools.

D. Comparison of information carried with entropy

Similar to diversity measures, we expect little correlation
when number of mutants is not controlled for, (Judy×Major
-0.066) to (Pit ×Major 0.354). We expect a larger set of
mutants to have more entropy, and smaller set of mutants to
have less entropy. (Judy×Pit -2) and (Pit×Major 0.186).

Once the number of mutants are controlled, we see a larger
correlation (Judy ×Major 0.537) to (Pit×Major 0.688),
but little difference in mean (Judy×Pit -2) and (Pit×Major
0.186).

For entropy, we again find Pit and Major better than Judy.
Pit and Major have similar values, with Pit leading by a slight
margin.

In terms of entropy, the leaders are Pit and Major, with Pit
leading by a small margin.

E. Tool Assessment

In this section, we provide an overall evaluation of the tools
we used, considering all measures.

1) Judy: Judy is a tool oriented towards a research audi-
ence, and produces bytecode based mutants. We see that Judy
produces the smallest number of mutants, compared to Major
and Pit. In terms of raw mutation score, Judy has a slight
advantage over other tools, with Judy producing the lowest
mean mutation score. However, the difference is small, further
reduced if non-detected mutants are removed first. In terms
of mutant strength with either minimal mutants or surface
mutants, the other two tools (Major and Pit) perform better
than Judy. In terms of covariance between mutants, while
Judy is better than Pit and Major on average when number of
mutants is not considered, both Pit and Major are better than
Judy when we restrict the number of mutants. In terms of multi
information, Judy is better than Pit and Major when full sets
of mutants are considered. However this is likely to be due to
the small number of mutants produced by Judy, as shown by
the sampled measure. That is, for a constant sized sample of
mutants, Pit and Major produced more diverse mutants than
Judy. The entropy measure also suggests that mutants from Pit
and Major contain more information about the program than
Judy.

2) Major: Major is one of the few tools in use that is source
based. It is also oriented towards the research community.
In terms of raw mutation score, Major produces a medium
mean mutation score score compared to Pit (higher) and
Judy (lower). However, the mean difference is marginal. The
conclusions are similar for refined mutation scores, with a
difference of a few percentage points between mean mutation
score across projects with other tools. In terms of minimal
and surface mutant sets, without controlling the number of
mutants, Major produces the best mean mutant set. However,
this advantage disappears once we control the number of
mutants, with Pit producing better mean mutant set. In terms of
diversity measures, sum of covariance and mutual information,
Major occupies a middle rank between Pit and Judy both with
and without control for number of mutants, with Judy better
when the number of mutants are not controlled, and Pit better
when the number of mutants is controlled. For entropy, Major
is better than Judy, while Pit is better than Major. We also
note that Mutants from Major and Pit are very close in most
measures.

3) Pit: Pit is a tool firmly focused on an industrial au-
dience. It is bytecode based, and in terms of ease of use,
provides the best user experience. Pit produces a very large

number of mutants compared to Major and Judy. In terms
of mean raw mutation score, the mutants produced by Pit
are marginally easier to detect than those produced by other
tools (the difference decreases if refined mutants are used).
In terms of size of minimal and surface mutant sets, Pit
occupies a middle ground between Judy (smaller) and Major
(larger). However, when the number of mutants is controlled,
Pit produces the strongest mutant set. For diversity measures
such as sum of covariance and mutual information, controlling
the number of mutants, Pit produces mutants with the most
diversity. In terms of information content, Pit produces mutants
with the largest entropy both when number of mutants is
controlled or otherwise.

F. Impact of phase of generation

There is no evidence that phase of generation had any
impact on the mutation score — either raw or refined. For
strength of mutants — using minimal or surface sets — there
was no evidence that phase mattered when the number of
mutants was not controlled. While the variable phase could
explain some of the variability in mutation score with statistical
significance once the number of mutants was controlled, the ac-
tual effect was only a few percentage points, and was dwarfed
by the variability introduced by the tool. For measurements
of diversity of mutants — sum of covariance and mutual
information — we found similar results. While statistically
significant effect was observed once the number of mutants
was controlled, the effect was less than a percentage point,
and was dwarfed by the difference due to tool. For entropy,
the effect of phase was statistically significant both with and
without control for number of mutants. However, as for the
measures of diversity, the variability explained was small, and
dwarfed by the variability due to tool.

In summary, there is little evidence of a large impact of phase
of generation on the variability of mutants.

G. Impact of target audience

There is no evidence that target audience had any impact on
the mutation score — either raw or refined. For strength of mu-
tants — using minimal or surface sets — the variable audience
is statistically significant. For both minimal and surface sets,
the variance explained by audience is less than that explained
by tool for both full set of mutants, and constant number of
sampled mutants. Considering the measurements for diversity
of mutants — sum of covariance and mutual information — we
found that audience is indeed statistically significant, and the
impact is larger than that of considering tool separately when
considering the full set of mutants. However, when considering
a constant sample of mutants, the impact of tool is larger for
sum of covariance. For mutual information, the variation due
to project dwarfs the variation due to tool or audience. For
entropy, the impact of tool is again much larger than that due
to audience.

In summary, there is some evidence of a practical impact
of target audience on the variability of mutants using some
of the measures. However, the variability due to tool is larger
than the variability due to target audience, except for diversity

measures, and for diversity measures, the effect disappears
when the number of mutants is controlled.

The target audience has an impact on the variability of
mutants. However, this may be an artifact of the particular
tools used, and the number of mutants produced.

H. Impact of project characteristics

In every measure tested, even after accounting for obvious
factors such as number of mutants, and quality of test suites,
the variation due to individual characteristics of the project
was the single highest factor contributing to the variation of
measurements for different tools. Note that since we control for
number of mutants and test suite quality, this means that some
underlying semantic property of each project is the driving
factor, not mere size or test effort.

The characteristics of individual projects were the most im-
portant factor determining the effectiveness of different tools
by a large margin.

That is, the interaction of syntactic and semantic charac-
teristics of the project seems to determine whether a particular
mutation tool will perform well with a given project or not.
This is an area where further investigation is required to under-
stand what these factors are both in generation and detection
of mutants, and especially how they affect the quality of
mutants produced. A more immediate implication is that, until
we have an understanding of the factors involved, researchers
should be wary of relying on a small number of projects for
evaluation of their techniques. Finally, evolving a consensus
on the standardization of mutants produced is important for
the validity of mutation analysis in further research.

VI. THREATS TO VALIDITY

Our research makes use of multiple mutation tools, a
variety of measures, and a large number of subjects. This
means that our research is subject to the following threats to
validity.

The single most important threat to validity is the applica-
bility of our findings. Our subject programs were open source
Java projects from Github. While our choice of subjects was
driven by concerns about the size of the project (the larger
the better), the size of the test suite (the larger the better), and
the project’s ability to complete mutation analysis successfully
for the tools we selected, none of which have any direct
influence on the measures, threats due to indirect unforeseen
influences can’t be ruled out. Further, our research results
are only directly applicable only to Java programs. Though
we expect our findings to be applicable to mutation tools in
other programming languages, there is no statistical guarantee
for such a belief other than the relative similarity between
languages, between possible bugs, and hence between mutants.

While we tried very hard to use different kinds of tools,
the fact remains that only three tools could be evaluated. This
is not statistically adequate for any sort of guarantee about
the behavior of these tools. We base our confidence on the

observation that these tools are actively developed, used by
real world practitioners of testing, and researchers, and also
that the mutation operators are reasonably complete. However,
it is possible that our tools may not be representative of the
categories such as source based or bytecode mutation engines,
or a typical representative of a tool aimed at research or
industry. It is not clear if source and bytecode is a reasonable
representation of the variation in mutation due to difference
in phase of generation. More importantly, since we have only
three tools, large deviance from any single tool is a threat to
the validity of our research.

Finally, software bugs are a fact of life, and it can’t be ruled
out either in the tools used or in the analysis we performed.

While we have taken every care, the possibility of these
threats remain. Hence it is important that our research be
replicated on other languages with different tools, and on tools
using different phases for mutant generation. To facilitate such
a research, we place the data from our research and also the
source code of our publication which can be regenerated from
new data in the given format in public domain [93].

VII. CONCLUSION

We evaluated mutants produced by different tools for Java
mutation across a large number of projects using diverse
measures of tool effectiveness. Using these measures, we find
that the tool targeting industry — Pit — produced the best
mutants, although the difference with other tools was often
very small. We also find that the influence of project, even after
controlling for factors such as test suite and number of mutants
(which usually follows source code size of the project), is
still the dominant contributor to the variation between the
measurements from different tools.

That is, the syntactic characteristics of the projects and their
interaction with the semantic characteristics of the particular
project have the largest influence on how well a particular
mutation analysis tool performs in terms of the quality of
mutants produced.

We find that in terms of mutation score, there is very little
mean difference between different tools. However, we have
a more worrying result. Even though there was negligible
mean difference, the standard deviation and different forms
of correlation indicated that the mutant sets seldom agree on
the mutation scores, and often even disagreed on how to rank
two test suites in terms of effectiveness. This is especially
worrying given that a number of research papers rely on small
differences in correlation between mutation scores and other
measures to show that a particular technique works well. This
means that the research conducted so far is strongly tool
dependent. Further, the relatively large spread of mutation
scores suggests that some mutation tools may judge a test set
to be effective by some benchmark, and others may not, which
makes using any target mutation score (e.g., 80%) problematic
as a guideline for testing practice. It is unsafe to rely on any
single tool to measure adequacy of a test suite.

Our findings indicate a need to standardize mutation scores.
We propose that we go back to the original definition. That is,
standardize the mutation scores based on the actual exhaustive
generation of all mutants as permitted by the grammar of

the language in question. In fact, as Just et al. [7] shows,
traditional “easy” operators are not sufficient, and we have
to be serious about including all possible first order mutants
including function call mistakes, argument swapping, casts etc.
— all that are indicated by the language grammar. Since even
first-order changes can be infeasibly large, we suggest that the
changes to primitive types such as integers be restricted to the
well known traditional boundary values such as 0, 1, -1, and
(-)maxint.

Since for Java, there is no tool that currently provides
complete first-order mutation as we describe above, we suggest
that practitioners use a much larger set of projects to evaluate
mutation results using any of the tools we evaluated. As we
show, a large number of projects tend to ameliorate the ill
effects of an incomplete set of mutants. Once a standard
mutation framework is available, for any new mutation tool
or reduction technique that targets test quality assessment we
require that the mutation score from the proposed technique
be in high R2 correlation, of at least 0.95 with the standard,
and the coefficients β0, β1 of linear regression µstandard =
β0 + β1µnew be available. On the other hand, for tools and
reduction techniques that target comparison of testing testing
techniques, we require that the new mutation scores be in high
Kendall’s τb correlation of at least 0.95 with the standard.

There is a reason for insisting on different correlation
measures. For test assessment, it is only required that the
standard mutation scores can be predicted from the new
mutation score with the given accuracy. That is, it does not
matter if the difference is not consistently positive or negative.
However, for comparison between different testing techniques,
it is important that if the new technique finds a tool to be better
than another, it is in agreement with the standard mutation
analysis, also. Using Kendall’s τb also lets other tools be more
discriminating in specific areas than the standard, but still be
in overall agreement.

Obviously, in the long run there may be new standards
(e.g., more complete sets of mutation operators) that replace
the current standard; Such a tool needs to offer an argument for
its superiority, however, and measure its statistical divergence
from the standard to place results using an older standard in
context.

REFERENCES

[1] R. J. Lipton, “Fault diagnosis of computer programs,” Carnegie Mellon
Univ., Tech. Rep., 1971.

[2] T. A. Budd, R. J. Lipton, R. A. DeMillo, and F. G. Sayward, Mutation
analysis. Yale University, Department of Computer Science, 1979.

[3] M. Daran and P. Thévenod-Fosse, “Software error analysis: A real
case study involving real faults and mutations,” in ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
1996, pp. 158–171.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in International Conference on Software
Engineering. IEEE, 2005, pp. 402–411.

[5] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage criteria,”
IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 608–
624, 2006.

[6] H. Do and G. Rothermel, “On the use of mutation faults in empirical as-
sessments of test case prioritization techniques,” Software Engineering,
IEEE Transactions on, vol. 32, no. 9, pp. 733–752, 2006.

[7] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in software
testing?” in ACM SIGSOFT Symposium on The Foundations of Software
Engineering. Hong Kong, China: ACM, 2014, pp. 654–665.

[8] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[9] M. Delahaye and L. Du Bousquet, “A comparison of mutation analysis
tools for java,” in Quality Software (QSIC), 2013 13th International
Conference on. IEEE, 2013, pp. 187–195.

[10] T. A. Budd and A. S. Gopal, “Program testing by specification muta-
tion,” Computer Languages, vol. 10, no. 1, pp. 63–73, Jan. 1985.

[11] V. Okun, “Specification mutation for test generation and analysis,” Ph.D.
dissertation, University of Maryland Baltimore County, 2004.

[12] B. H. Smith and L. Williams, “An empirical evaluation of the mu-
java mutation operators,” in Testing: Academic and Industrial Confer-
ence Practice and Research Techniques-MUTATION, 2007. TAICPART-
MUTATION 2007. IEEE, 2007, pp. 193–202.

[13] Y. Jia and M. Harman, “Milu: A customizable, runtime-optimized
higher order mutation testing tool for the full c language,” in Practice
and Research Techniques, 2008. TAIC PART’08. Testing: Academic &
Industrial Conference. IEEE, 2008, pp. 94–98.

[14] A. Derezińska and K. Hałas, “Analysis of mutation operators for the
python language,” in International Conference on Dependability and
Complex Systems, ser. Advances in Intelligent Systems and Computing.
Springer International Publishing, 2014, vol. 286, pp. 155–164.

[15] D. Le, M. A. Alipour, R. Gopinath, and A. Groce, “Mucheck: An
extensible tool for mutation testing of haskell programs,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis.
ACM, 2014, pp. 429–432.

[16] R. Just, “The major mutation framework: Efficient and scalable mutation
analysis for java,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ser. ISSTA 2014. New York, NY,
USA: ACM, 2014, pp. 433–436.

[17] M. Kusano and C. Wang, “Ccmutator: A mutation generator for
concurrency constructs in multithreaded c/c++ applications,” in Auto-
mated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on. IEEE, 2013, pp. 722–725.

[18] H. Coles, “Pit mutation testing,” http://pitest.org/.

[19] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. Inglis, and M. Utting,
“Jumble java byte code to measure the effectiveness of unit tests,” in
Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION, 2007. TAICPART-MUTATION 2007. IEEE,
2007, pp. 169–175.

[20] J. Duraes and H. Madeira, “Emulation of software faults by educated
mutations at machine-code level,” in International Symposium on Soft-
ware Reliability Engineering, 2002, pp. 329–340.

[21] H. Coles, “Pit mutators,” http://pitest.org/quickstart/mutators/.

[22] M. Gligoric, V. Jagannath, and D. Marinov, “Mutmut: Efficient explo-
ration for mutation testing of multithreaded code,” in Software Testing,
Verification and Validation (ICST), 2010 Third International Conference
on. IEEE, 2010, pp. 55–64.

[23] J. Nanavati, F. Wu, M. Harman, Y. Jia, and J. Krinke, “Mutation
testing of memory-related operators,” in Software Testing, Verification
and Validation Workshops (ICSTW), 2015 IEEE Eighth International
Conference on. IEEE, 2015, pp. 1–10.

[24] Y.-S. Ma, Y.-R. Kwon, and J. Offutt, “Inter-class mutation operators for
java,” in International Symposium on Software Reliability Engineering.
IEEE, 2002, pp. 352–363.

[25] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class
mutation system,” Software Testing, Verification and Reliability, vol. 15,
no. 2, pp. 97–133, 2005.

[26] C. Zhou and P. Frankl, “Mutation testing for java database applica-
tions,” in Software Testing Verification and Validation, 2009. ICST’09.
International Conference on. IEEE, 2009, pp. 396–405.

[27] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient
mutation operators for measuring test effectiveness,” in International
Conference on Software Engineering. ACM, 2008, pp. 351–360.

http://pitest.org/
http://pitest.org/quickstart/mutators/

[28] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf,
“An experimental determination of sufficient mutant operators,” ACM
Transactions on Software Engineering and Methodology, vol. 5, no. 2,
pp. 99–118, 1996.

[29] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi, “Toward the
determination of sufficient mutant operators for c,” Software Testing,
Verification and Reliability, vol. 11, no. 2, pp. 113–136, 2001.

[30] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Do redundant
mutants affect the effectiveness and efficiency of mutation analysis?” in
Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on. IEEE, 2012, pp. 720–725.

[31] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng, “Mutant
subsumption graphs,” in Software Testing, Verification and Validation
Workshops (ICSTW), 2014 IEEE Seventh International Conference on.
IEEE, 2014, pp. 176–185.

[32] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation testing
by checking invariant violations,” in ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 2009, pp. 69–80.

[33] A. J. Offutt and W. M. Craft, “Using compiler optimization techniques
to detect equivalent mutants,” Software Testing, Verification and Relia-
bility, vol. 4, no. 3, pp. 131–154, 1994.

[34] D. Schuler and A. Zeller, “Covering and uncovering equivalent mu-
tants,” Software Testing, Verification and Reliability, vol. 23, no. 5, pp.
353–374, 2013.

[35] S. Nica and F. Wotawa, “Using constraints for equivalent mutant
detection,” in Workshop on Formal Methods in the Development of
Software, WS-FMDS, 2012, pp. 1–8.

[36] M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in International Conference on
Software Engineering, 2015.

[37] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” International
Conference on Software Engineering, pp. 919–930, 2014.

[38] R. Gopinath, A. Alipour, A. Iftekhar, C. Jensen, and A. Groce, “How
hard does mutation analysis have to be, anyway?” in International
Symposium on Software Reliability Engineering. IEEE, 2015.

[39] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and A. Groce, “Do
mutation reduction strategies matter?” Oregon State University, Tech.
Rep., Aug 2015, under review for Software Quality Journal. [Online].
Available: http://hdl.handle.net/1957/56917

[40] H. Coles, “Mutation testing systems for java compared,” http://pitest.
org/java_mutation_testing_systems/.

[41] L. Madeyski and N. Radyk, “Judy–a mutation testing tool for java,”
IET software, vol. 4, no. 1, pp. 32–42, 2010.

[42] P. K. Singh, O. P. Sangwan, and A. Sharma, “A study and review
on the development of mutation testing tools for java and aspect-j
programs,” International Journal of Modern Education and Computer
Science (IJMECS), vol. 6, no. 11, p. 1, 2014.

[43] J. Offut, “Problems with jester,” https://cs.gmu.edu/~offutt/documents/
personal/jester-anal.html.

[44] P. Ammann, “Problems with jester,” https://sites.google.com/site/
mutationworkshop2015/program/MutationKeynote.pdf.

[45] J. Offut, “Problems with parasoft insure++,” https://cs.gmu.edu/~offutt/
documents/handouts/parasoft-anal.html.

[46] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in International Conference on Software
Testing, Verification and Validation. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 21–30.

[47] J. W. Nimmer and M. D. Ernst, “Automatic generation of program
specifications,” ACM SIGSOFT Software Engineering Notes, vol. 27,
no. 4, pp. 229–239, 2002.

[48] M. Harder, B. Morse, and M. D. Ernst, “Specification coverage as a
measure of test suite quality,” MIT Lab for Computer Science, Tech.
Rep., 2001.

[49] M. Harder, J. Mellen, and M. D. Ernst, “Improving test suites via
operational abstraction,” in International Conference on Software En-
gineering. IEEE Computer Society, 2003, pp. 60–71.

[50] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is operator-based
mutant selection superior to random mutant selection?” in International
Conference on Software Engineering. New York, NY, USA: ACM,
2010, pp. 435–444.

[51] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, “Operator-based
and random mutant selection: Better together,” in IEEE/ACM Automated
Software Engineering. ACM, 2013.

[52] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and
D. Marinov, “Comparing non-adequate test suites using coverage cri-
teria,” in ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 2013.

[53] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite
evaluation by developers,” in International Conference on Software
Engineering. IEEE, 2014.

[54] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 34–41, 1978.

[55] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward,
“Theoretical and empirical studies on using program mutation to test
the functional correctness of programs,” in ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, 1980, pp.
220–233.

[56] T. A. Budd, “Mutation analysis of program test data,” Ph.D. dissertation,
Yale University, New Haven, CT, USA, 1980.

[57] A. P. Mathur and W. E. Wong, “An empirical comparison of data
flow and mutation-based test adequacy criteria,” Software Testing,
Verification and Reliability, vol. 4, no. 1, pp. 9–31, 1994.

[58] A. J. Offutt and J. M. Voas, “Subsumption of condition coverage
techniques by mutation testing,” Technical Report ISSE-TR-96-01,
Information and Software Systems Engineering, George Mason Uni-
versity, Tech. Rep., 1996.

[59] K. S. H. T. Wah, “A theoretical study of fault coupling,” Software
Testing, Verification and Reliability, vol. 10, no. 1, pp. 3–45, 2000.

[60] ——, “An analysis of the coupling effect i: single test data,” Science
of Computer Programming, vol. 48, no. 2, pp. 119–161, 2003.

[61] A. J. Offutt, “The Coupling Effect : Fact or Fiction?” ACM SIGSOFT
Software Engineering Notes, vol. 14, no. 8, pp. 131–140, Nov. 1989.

[62] ——, “Investigations of the software testing coupling effect,” ACM
Transactions on Software Engineering and Methodology, vol. 1, no. 1,
pp. 5–20, 1992.

[63] W. B. Langdon, M. Harman, and Y. Jia, “Efficient multi-objective higher
order mutation testing with genetic programming,” Journal of systems
and Software, vol. 83, no. 12, pp. 2416–2430, 2010.

[64] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are they
to real faults?” in Software Reliability Engineering (ISSRE), 2014 IEEE
25th International Symposium on, Nov 2014, pp. 189–200.

[65] D. Baldwin and F. Sayward, “Heuristics for determining equivalence of
program mutations.” DTIC Document, Tech. Rep., 1979.

[66] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and
infeasible paths,” Software Testing, Verification and Reliability, vol. 7,
no. 3, pp. 165–192, 1997.

[67] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,”
in Mutation testing for the new century. Springer, 2001, pp. 34–44.

[68] A. T. Acree, Jr., “On mutation,” Ph.D. dissertation, Georgia Institute of
Technology, Atlanta, GA, USA, 1980.

[69] A. Mathur, “Performance, effectiveness, and reliability issues in soft-
ware testing,” in Annual International Computer Software and Appli-
cations Conference, COMPSAC, 1991, pp. 604–605.

[70] W. E. Wong, “On mutation and data flow,” Ph.D. dissertation, Purdue
University, West Lafayette, IN, USA, 1993, uMI Order No. GAX94-
20921.

[71] W. Wong and A. P. Mathur, “Reducing the cost of mutation testing: An
empirical study,” Journal of Systems and Software, vol. 31, no. 3, pp.
185 – 196, 1995.

[72] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation
of selective mutation,” in International Conference on Software Engi-
neering. IEEE Computer Society Press, 1993, pp. 100–107.

[73] R. A. DeMillo, D. S. Guindi, W. McCracken, A. Offutt, and K. King,
“An extended overview of the mothra software testing environment,” in

http://hdl.handle.net/1957/56917
http://pitest.org/java_mutation_testing_systems/
http://pitest.org/java_mutation_testing_systems/
https://cs.gmu.edu/~offutt/documents/personal/jester-anal.html
https://cs.gmu.edu/~offutt/documents/personal/jester-anal.html
https://sites.google.com/site/mutationworkshop2015/program/MutationKeynote.pdf
https://sites.google.com/site/mutationworkshop2015/program/MutationKeynote.pdf
https://cs.gmu.edu/~offutt/documents/handouts/parasoft-anal.html
https://cs.gmu.edu/~offutt/documents/handouts/parasoft-anal.html

International Conference on Software Testing, Verification and Valida-
tion Workshops. IEEE, 1988, pp. 142–151.

[74] J. Zhang, M. Zhu, D. Hao, and L. Zhang, “An empirical study on the
scalability of selective mutation testing,” in International Symposium
on Software Reliability Engineering. ACM, 2014.

[75] X. Cai and M. R. Lyu, “The effect of code coverage on fault detection
under different testing profiles,” in ACM SIGSOFT Software Engineer-
ing Notes, vol. 30, no. 4. ACM, 2005, pp. 1–7.

[76] A. S. Namin and J. H. Andrews, “The influence of size and coverage
on test suite effectiveness,” in ACM SIGSOFT International Symposium
on Software Testing and Analysis. ACM, 2009, pp. 57–68.

[77] P. Ammann, “Transforming mutation testing from the technology of the
future into the technology of the present,” in International Conference
on Software Testing, Verification and Validation Workshops. IEEE,
2015.

[78] GitHub Inc., “Software repository,” http://www.github.com.
[79] Apache Software Foundation, “Apache commons,” http://commons.

apache.org/.
[80] M. Sridharan and A. S. Namin, “Prioritizing mutation operators based

on importance sampling,” in International Symposium on Software
Reliability Engineering. IEEE, 2010, pp. 378–387.

[81] R. H. Untch, “On reduced neighborhood mutation analysis using a
single mutagenic operator,” in Annual Southeast Regional Conference,
ser. ACM-SE 47. New York, NY, USA: ACM, 2009, pp. 71:1–71:4.

[82] P. Chevalley and P. Thévenod-Fosse, “A mutation analysis tool for
java programs,” International journal on software tools for technology
transfer, vol. 5, no. 1, pp. 90–103, 2003.

[83] Parasoft, “Insure++,” www.parasoft.com/products/insure/papers/tech_
mut.htm.

[84] J. Offutt, “Insure++ critique,” https://cs.gmu.edu/~offutt/documents/
handouts/parasoft-anal.html.

[85] Parasoft, “Insure++ mutation analysis,” http://www.parasoft.com/jsp/
products/article.jsp?articleId=291&product=Insure.

[86] D. Schuler and A. Zeller, “Javalanche: Efficient mutation testing for
java,” in ACM SIGSOFT Symposium on The Foundations of Software
Engineering, Aug. 2009, pp. 297–298.

[87] M. P. Usaola and P. R. Mateo, “Bacterio: Java mutation testing tool:
A framework to evaluate quality of tests cases,” in Proceedings of the
2012 IEEE International Conference on Software Maintenance (ICSM),
ser. ICSM ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 646–649.

[88] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “Mujava: A mutation system for
java,” in Proceedings of the 28th International Conference on Software
Engineering, ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp.
827–830.

[89] I. Moore, “Jester-a junit test tester,” in International Conference on
Extreme Programming, 2001, pp. 84–87.

[90] M. G. Macedo, “Mutator,” http://ortask.com/mutator/.
[91] S. Watanabe, “Information theoretical analysis of multivariate correla-

tion,” IBM J. Res. Dev., vol. 4, no. 1, pp. 66–82, Jan. 1960.
[92] C. E. Shannon, “A mathematical theory of communication,” ACM

SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[93] R. Gopinath, “Replication data for: Does Choice of Mutation Tool
Matter?” http://eecs.osuosl.org/rahul/sqj2015.

http://www.github.com
http://commons.apache.org/
http://commons.apache.org/
www.parasoft.com/products/insure/papers/tech_mut.htm
www.parasoft.com/products/insure/papers/tech_mut.htm
https://cs.gmu.edu/~offutt/documents/handouts/parasoft-anal.html
https://cs.gmu.edu/~offutt/documents/handouts/parasoft-anal.html
http://www.parasoft.com/jsp/products/article.jsp?articleId=291&product=Insure
http://www.parasoft.com/jsp/products/article.jsp?articleId=291&product=Insure
http://ortask.com/mutator/
http://eecs.osuosl.org/rahul/sqj2015

	Introduction
	Related Work
	Methodology for Assessment
	Measures
	Raw mutation score
	Refined mutation scores after eliminating undetected mutants
	Minimal set of mutants
	What is the impact of tools after controlling the number of mutants produced?

	Surface mutants
	What is the impact of tools after controlling the number of mutants produced?

	Covariance between mutants
	 What is the impact of tools after controlling the number of mutants produced?

	Mutual information (Total correlation) between mutants
	What is the impact of tools after controlling the number of mutants produced?

	Entropy carried by mutants
	What is the impact of tools after controlling the number of mutants produced?

	Discussion
	Comparison of difficulty of detection with mutation scores
	Comparison of mutant strength with minimal mutation sets
	Comparison of mutant diversity with statistical measures
	Comparison of information carried with entropy
	Tool Assessment
	Judy
	Major
	Pit

	Impact of phase of generation
	Impact of target audience
	Impact of project characteristics

	Threats to Validity
	Conclusion
	References

