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Abstract—In data processing, datasets are expected to adhere
to specific formats. However, inconsistencies due to human
error, data corruption, or partial transmission can render these
datasets nonconforming, hindering automated processing. This
necessitates manual data repair, a time-consuming and error-
prone task, especially when formal specifications are unavailable.

To address this challenge, we introduce ϵREPAIR, a novel
format-free approach to automating data repair. ϵREPAIR lever-
ages parser feedback to detect and correct data inconsistencies,
making it a versatile solution for data cleansing.

In evaluation, ϵREPAIR achieves 2.6× higher-quality repairs
than its closest competitor, DDMax, in terms of the number of
edits required to restore corrupted data, while reducing data loss
by 2.8× compared to DDMax, with only 1.4×runtime overhead.

This work presents a practical, robust, and flexible format-
free data repair alternative to DDMax. Its applications extend to
domains such as data science, software development, and other
human-centric systems, where handling diverse and inconsistent
datasets is critical.

Index Terms—Input-repair, Error-correction, Data-Cleansing

I. INTRODUCTION

Data repositories frequently contain corrupted records
caused by unintended errors. These corruptions may occur
during data creation due to human mistakes [1], [2], software
bugs [3], [4], or hardware failures [5]. Corruptions can also
arise during data modification—whether through interference
by external actors or incomplete network transmission [6], [7].

For example, manual data entry without proper validation
can introduce nonconforming records [8]. Spreadsheets—the
most widely used reporting platform in the world [9]— contain
over 40% textual data (excluding dates and times) [10], and
more than 94% of them include errors [11]. Format incon-
sistencies across data sources can also result in incompatible
implementations. For instance, different JSON libraries may
interpret the same format in conflicting ways [12], [13], and
database systems often support different SQL dialects [14].
Even within a single organization, CSV files can exhibit sig-
nificant structural variation [15], while formats such as dates
and times frequently use diverse standards and inconsistent
delimiters across sources [16].

While formats like XML are considered standardized and
rigid, a record may still be unparsable if the parser supports
only a subset of the standard [17]. Faced with nonconforming
records that are almost, but not quite, parsable, developers
often carry the burden of data repair—a critical responsibility

due to the prevalence of such records in data science and
software engineering [18], [19]. Automatic data recovery is
often infeasible [18], [20], leaving developers to either discard
corrupted records [21] or manually repair them [18]—a time-
consuming and error-prone task [22].

To address these issues, researchers have developed au-
tomatic data repair techniques, such as error-correcting
parsers [23]–[25]. These approaches rely on formal speci-
fications (i.e., grammars) to repair nonconforming records.
However, their effectiveness is limited by the availability
and reliability of such formal specifications. Many formats
(e.g., CSV [15], WHATWG URL standards [26], [27], Mark-
down [28]) either lack formal specifications or have numer-
ous conflicting versions. Moreover, parsers are often custom-
built [29], [30], implementing subtle deviations from their
documented specifications, which can make grammar-based
methods suboptimal for real-world scenarios.

When formal specifications are unavailable, DDMax [19]
remains the most effective known alternative. DDMax operates
similarly to Delta Debugging [31], but in reverse. It requires
three key components: (1) a parser to identify valid inputs, (2)
a starting minimal subsequence of the input that is valid, and
(3) the ability to add fragments (δs) to this input, resulting in
larger valid inputs (called waypoints).

Given these prerequisites and a corrupt record that induces a
parse error, DDMax proceeds as follows: (1) First, it identifies
the fragments (δs) from the original record that can be added
to the minimal valid subsequence without triggering a parse
error. (2) Next, DDMax generates increasingly larger valid
δ sequences by systematically adding more fragments and
checking whether the resulting input remains valid according
to the parser. (3) Finally, DDMax identifies the largest valid
sequence of δs that can be inserted into the minimal subse-
quence without causing a parse error, and selects this sequence
as the repaired record.

By identifying and maximizing the sections of the record
that contain valid data fragments, DDMax isolates the portion
of the record responsible for triggering the parse error, which
is then eliminated. This process enables DDMax to maximize
data retention while minimizing data loss.

However, DDMax has notable limitations: (1) DDMax only
allows for fragment deletion (δs) as a repair operation, which
is often suboptimal in practice. For example, in the case of



TABLE I: DDMax vs. ϵREPAIR: examples showing limitations of DDMax and the strengths of ϵREPAIR

Examples of Corrupt DDMax ϵREPAIR DDMax
Inputs Result Result Limitation
{ "name": "Dave" "age": 42 } 42 { "name": "Dave" ,"age": 42 } Limited repair

options (deletion)
{ "item": "Apple", "price" 3.45 { "item": "Apple", "price" Rich structure
: ***3.45} : 3.45} (spans)
{"ABCD":[*"1,2,3,4,5,6"]*} 123456 {"ABCD":["1,2,3,4,5,6"]} Rich structure

(multiple-faults)
2024/07/23T12:34:56Z None 2024-07-23T12:34:56Z Requires valid

empty data

interrupted network transfers, data is typically truncated. In
such cases, deleting additional data only worsens the problem.
(Indeed, deleting parts of the surviving data in a network
transfer is especially detrimental because the correctness of the
transferred data is typically guaranteed by TCP/IP.) Similarly,
in the case of disk corruption, the issue is not missing data
but rather corrupt data. Here, the optimal repair would involve
correcting the corrupted fragments where possible, rather than
simply deleting them. Because DDMax only supports deletion,
it cannot perform such replacements, limiting its effectiveness.
(2) DDMax requires a valid empty record to start from, as well
as valid records as waypoints to the maximally valid record.
This is problematic in common data formats, such as date and
time, which are typically defined using regular expressions
and do not permit empty or incrementally valid forms. (3) In
many cases, DDMax struggles with repairing multi-character
corruptions because the partitioning strategy used by DDMax
can’t correctly isolate faulty fragments.

These constraints hinder DDMax’s ability to achieve max-
imal data repair, often resulting in considerable data loss.
Table I illustrates a few such examples.

To overcome these shortcomings, we introduce ϵREPAIR,
a novel approach leveraging the parse-failure feedback from
parsers. This feedback often indicates the parse error loca-
tion, precisely guiding data repair. Unlike DDMax, ϵREPAIR
supports deletions, insertions, and replacements1, enabling
comprehensive and effective data repair.

ϵREPAIR shares foundational requirements such as the abil-
ity to validate records with DDMax, but removes the need for
a valid starting minimal subsequence and intermediate valid
waypoints. Instead, it relies on the parser to indicate location
of the error, or at least whether a record is incomplete (a valid
prefix of a conforming record) or incorrect (no suffix can make
the record valid). This information is available from a wide
variety of parsers [32]–[34] or can be externally incorporated
(e.g., Mathis et al. [35]).

This paper makes the following contributions:
• Identifying DDMax Limitations. We highlight and

demonstrate the shortcomings of DDMax, which can
result in significant data loss.

• Relaxed Requirements. Our approach eliminates the
need for empty passing subsequence and intermediate
valid waypoints by leveraging parse-failure feedback.

1Replacements are modeled as deletion followed by an insertion.

• Universal Data Repair. In contrast to DDMax, our data
repair methodology incorporates deletions, insertions, and
consequently substitutions.

• Empirical Evaluation. We evaluate ϵREPAIR using 400
records belonging to four well-known data formats result-
ing in 4800 corrupted records. Our results show that in
comparison to DDMax, ϵREPAIR delivers 2.6× higher-
quality repairs, reducing data loss by 2.8×. We also
demonstrate data repair on data described by regular
expressions, a feat impossible for DDMax.

We structure the remainder of the paper as follows: Sec-
tion II discusses DDMax limitations. Section III describes the
ϵREPAIR algorithm. Our research questions are in Section IV.
The results are in Section V, and we discuss the implications
in Section VI. The related research is discussed in Section VII,
threats in Section VIII, and Section IX concludes.

II. LIMITATIONS OF DDMax

We will first illustrate the limitations of the DDMax algo-
rithm [19] and show how ϵREPAIR addresses these limitations.

A. Corrections in DDMax formalization

We identified two (minor) errors in the formal definition
of DDMax (see Figure 1). Specifically, (1) DDMax requires
the base case when |c× − c✓| = 1, where c× is the failing
configuration, and c✓ the passing configuration and the differ-
ence between the two is just a single character. If not, DDMax
goes into unbounded recursion on inputs such as the incorrect
(c×) JSON input: 1*1 where the closest c✓ is 11. (2) When
increasing granularity, the size of the remaining input should
be considered instead of the entire text. Not doing this would
cause an invariant failure for JSON inputs such as {*"":2}.
The DDMax algorithm from Kirschner et al. [19, Figure 5]
with corrections mentioned here in red is provided in Figure 1.

B. Limitations due to multiple faults

A DDMax failure pattern occurs for inputs with multiple
errors. For example, consider the JSON input [*]+. Here,
the JSON string is invalid because of two invalid characters
that are non-contiguous. DDMax proceeds as follows:

1) The operation starts with DDMax2(∅, 2)
2) |c× − ∅| ≠ 1. Hence, the base case does not apply
3) Can we increase to complement?
c× −∆1= ]+ ×
c× −∆2= [* ×



Maximizing Delta Debugging Algorithm

Let test and c× be given such that test(∅) = ✓ ∧ test(c×) = × hold.
The goal is to find c′✓ = DDMax(c×) such that c′✓ ⊂ c×, test(c′✓) = ✓, and ∆ = c× − c′✓ is 1-minimal.
The maximizing Delta Debugging algorithm DDMax(c) is

DDMax(c×) = DDMax2(∅, 2) where

DDMax2(c′✓, n) =



c′✓ if |c× − c′✓| = 1 (“base casea”)
DDMax2(c× −∆i, 2) else if ∃i ∈ {1, . . . , n} · test(c× −∆i) = ✓

(“increase to complement”)
DDMax2

(
c′✓ ∪∆i,max(n− 1, 2)

)
else if ∃i ∈ {1, . . . , n} · test(c′✓ ∪∆i) = ✓
(“increase to subset”)

DDMax2
(
c′✓,min(|c×−c′✓|, 2n)

)
else if n < |c× − c′✓| (“increase granularityb”)

c′✓ otherwise (“done”).

where ∆ = c× − c′✓ = ∆1 ∪∆2 ∪ · · · ∪∆n, all ∆i are pairwise disjoint, and ∀∆i · |∆i| ≈ |c× − c′✓|/n holds.
The recursion invariant (and thus precondition) for DDMax2 is test(c′✓) = ✓ ∧ n ≤ |∆|.
a: Bugfix: This base case is necessary to ensure that repairing JSON input 1*1 does not violate the invariant n ≤ |∆|.
b: Bugfix: We should look for minimum of the remaining so that n ≤ |∆| is not violated for JSON input {*"":2}.

Fig. 1: Maximizing Lexical Delta Debugging algorithm from Kirschner et al. [19, Figure 5] with corrections in red.

4) Can we increase to subset?
∅ ∪∆1=[* ×
∅ ∪∆2= ]+ ×

5) Can we increase granularity? n < |c× − c′✓|
which is 2 < |c× − ∅| ✓
Hence the next iteration is: DDMax2

(
∅, 4)

)
6) |c× − ∅| ≠ 1. Hence, the base case does not apply.
7) Can we increase to complement?
c× −∆1= *]+ ×
c× −∆2= []+ ×
c× −∆3= [*+ ×
c× −∆4= [*] ×

8) Can we increase to subset?
∅ ∪∆1=[ ×
∅ ∪∆2=* ×
∅ ∪∆3=] ×
∅ ∪∆4=+ ×

9) Can we increase granularity? 4 < 4 ×
10) The solution is ∅.

That is, DDMax is unable to optimally repair inputs of this
kind which contain multiple errors. To illustrate how this
can lead to large data losses, consider Table I row 3. Here,
{"ABCD":[*"1,2,3,4,5,6"]*} contains two distinct
corruptions. DDMax attempts to isolate and remove the error-
inducing fragment by dividing the input into progressively
smaller parts. However, none of these parts individually cause
the error, such that removing any one of them eliminates it.

This results in the solution 123456 with significant data
loss, including the loss of structure and change in input
fragment type from string to number. Hence, DDMax cannot
effectively repair such inputs with multiple faults.

C. Effect of fragment decomposition
DDMax can produce non-optimal results even when the

errors are contiguous, and hence considered single by DDMax.
The problem happens when the corruption in the input inter-
acts with the fragment decomposition algorithm of DDMax.
As an example, consider a variant of the previous input: [*+].
The JSON string is invalid here because it contains two invalid
characters which are contiguous. The operation of DDMax
(Figure 1) is as follows:

1) The operation starts with DDMax2(∅, 2)
2) |c× − ∅| ≠ 1. Hence, the base case does not apply
3) Can we increase to complement?

c× −∆1= +] ×
c× −∆2= [* ×

4) Can we increase to subset?
∅ ∪∆1=[* ×
∅ ∪∆2= +] ×

5) Can we increase granularity? n < |c× − c′✓|
which is 2 < |c× − ∅| ✓
Hence the next iteration is: DDMax2

(
∅, 4)

)
6) |c× − ∅| ≠ 1. Hence, the base case does not apply.
7) Can we increase to complement?

c× −∆1= *+] ×
c× −∆2= [+] ×
c× −∆3= [*] ×
c× −∆4= [*+ ×

8) Can we increase to subset?
∅ ∪∆1=[ ×
∅ ∪∆2=* ×
∅ ∪∆3=+ ×
∅ ∪∆4=] ×

9) Can we increase granularity? 4 < 4 ×
10) The solution is ∅.



That is, DDMax is unable to repair this invalid
JSON string. To understand its impact, consider
{ "item": "Apple", "price": ***3.45 }
in Table I which is from Kirschner et al. [19, Fig. 1] but with
an extra *. The DDMax repair is 3.45, resulting in
loss of structure and data.

The issue arises from DDMax’s partitioning strategy, which
fails to isolate the error-causing fragment, even when it
is contiguous. Despite the error being localized, no single
removable fragment is identified that eliminates the error.
Consequently, DDMax continues to search for increasingly
smaller fragments, inadvertently discarding larger portions of
potentially valid data in the process.

D. Limited Repertoire for Repair

Another major limitation of DDMax is that the only oper-
ation in its toolbox is deletion of tokens. Consider the fol-
lowing fragment: { "name": "Dave" "age": 42 }.
Here, there is a missing comma. The DDMax repair of
this string will result in just 42, which is an un-
expected and significant reduction from the original string.
The issue is that, deletion of fragments alone can lead to
significant corruption of information. In this instance, the
availability of insertion could have repaired the input string
to { "name": "Dave", "age": 42 }. As DDMax is
unable to insert tokens, such opportunities can be missed.

E. Single repair-candidate

Consider the following corrupted data ["A",[1,2]"].
Given deletion as the only option, there are two possi-
ble repair candidates here: (1) ["A,[1,2]"] and (2)
["A",[1,2]]. Either may be the correct one. However,
DDMax has to choose just one candidate, and the choice
depends exclusively on which fragment was tested first. This
means that DDMax cannot rely on a post-processing intelligent
selector such as an end-user or an automatic validator even if
one is provided.

F. Requirement of Valid Intermediates (Waypoints)

A severe limitation of DDMax is the assumption of
a valid passing subsequence that can be progressively
extended to form the final solution that is closest to the
original record [19, Sec. 3.2]. This particular assumption
may not be warranted in many real-world scenarios. For
example, consider a parser for date-time. It expects strings
that follow the format YYYY-MM-DDTHH:MM:SSZ. Given
corrupt inputs such as X2024-07-23T12:34:56Z,
1925X-09-13T10:14:16Z, and
1999-12-20T12:34:56ZX, there is no empty date
that DDMax can start from, that is applicable to all inputs
even though the repair only requires X to be deleted.

G. Susceptibility to Local Maxima

DDMax assumes that a valid passing minimal subsequence
can be progressively extended to the maximal valid subse-
quence. However, even when such a minimal subsequence

exists, extending it maximally may not result in greater data
retention compared to the original (corrupted) string.

For example, consider the corrupt JSON input string
{ "name": "Dave" "age": 42 }. DDMax starts by
identifying a minimal passing subsequence—the empty se-
quence. It then extends this sequence with 4, and contin-
ues to extend it to 42. However, at this point, no
additional fragments from the original input can be added
without violating the parser constraints. As a result, potentially
recoverable information is discarded because initial repair de-
cisions constrain future possibilities, demonstrating DDMax’s
susceptibility to local maxima.

III. REPAIRING DATA WITH ϵREPAIR

Our approach was motivated by the following observation.
Consider this output from jq, a popular JSON processor.

$ echo -n '{"name": "Dave" "age":42}' | jq .
parse error: Expected separator at line 1,
column 21

On providing an input that contains the missing comma, the
parser responds with an approximate location of the error.
If we instead provide jq with a truncated input, the parser
responds with EOF indicating incomplete input,

$ echo -n '{"name": "Dave" ' | jq .
parse error: Unfinished JSON term at EOF at
line 1, column 16

requiring further data for completion. This behavior (i.e.,
detecting a viable-prefix) is supported by a wide variety of
parsers including formal general-purpose parsers [32]–[34].
Our insight is that we can leverage this behavior to our
advantage and attempt to repair the input based on a minimal
reliance on the parser feedback. In particular, our approach
ϵREPAIR only requires that the parser is able to distinguish
between incorrect input and incomplete input. Given a parser
that obeys this minimal contract, we can quickly determine the
location of the error, and identify the minimal edits required
to fix the parser error2.

The following terms are used in our definition of ϵREPAIR:
alphabet The set of characters.
string A sequence of elements of an alphabet.
edit An edit is deletion or insertion of a single character.
parser An input processor that reads a string and indicates

whether the string is accepted (✓), or rejected (×).
conforming parser A parser that instead of just rejecting the

string, also specifies whether the string is incorrect (⋫)
or merely incomplete (▷), that is, a suffix exists that will
make the complete string acceptable to the parser.

viable-prefix A string that when passed to the conforming
parser, results in ▷ or ✓ response from the parser.

parse-boundary Length of the maximal viable-prefix of a
string according to a conforming parser. To the right of
the parse-boundary is the maximal viable-prefix and to
the left is the remaining-suffix.

2Conversely, error location, if available, can be leveraged for the same
contract.



Algorithm 1 Boundary search for ϵREPAIR

1: function BSEARCH(string, parser)
2: left, right ← 0, LEN(string)
3: if PARSER(string[:right]) ∈ {▷,✓} then
4: return right
5: while left < right −1 do
6: middle ← (left + right) // 2
7: if PARSER(string[:middle]) ∈ {▷,✓} then
8: left ← middle
9: else

10: right ← middle
11: return left

repair An edit made to the string that extends its parse-
boundary or reduces the remaining-suffix.

repair-thread A sequence of repairs made on an input string.
It has a single parse-boundary—the parse-boundary of the
last repair in this thread, a corresponding viable-prefix,
and the remaining-suffix.

repair-candidate A repair thread becomes a repair-candidate
when the repaired string elicits the ✓ response from the
parser, and there is no remaining-suffix.

edit-distance The number of minimal edits required to trans-
form one to the other.

repair-distance The edit-distance from corrupt string to the
repair-candidate.

thread-queue A priority queue of repair-threads sorted by
the number of repairs and the parse-boundary.

The problem of data repair is: Given a string and a parser,
find the least number of repairs to make the string pass the
parser. Using a conforming parser, the ϵREPAIR algorithm
can repair the string with the following steps:
1) Boundary search. Given a corrupt string, ϵREPAIR starts

a search for the parse-boundary (Algorithm 1). This is
then used to construct the thread-queue containing a single
empty repair-thread, with the parse-boundary set to the
search result.

2) Apply Repair. Starting with any existing repair-thread,
ϵREPAIR applies either a deletion or an insertion on the
remaining-suffix. This results in a new repair-thread.
• An insertion inserts a character to the beginning of

the remaining-suffix. Let S
′

be the viable-prefix of the
current repair-thread, and c be the character. We create
one repair-thread for each c in the alphabet where the
parser responds with incomplete for S

′
+c, with the new

viable-prefix S
′
+ c.

3) Extend Boundary. For each repair-thread that results from
the previous step, we attempt to extend the parse-boundary
by adding additional characters from the remaining-suffix.

4) Check Candidates. If any thread results in a repair-
candidate, then we return the candidate.

5) Select Threads. The algorithm selects the repair-thread
from the priority queue which has recovered the maximum
data so far from the original string, and continues through

Algorithm 2 ϵREPAIR Algorithm

1: function DREPAIR(string, parser)
2: boundary ← BSEARCH(string, parser)
3: pq ← PRIORITYQUEUE
4: ADD(pq, (string, boundary, ∅))
5: while pq ̸= ∅ do
6: (string, boundary, fixes) ← TOP(pq)
7: deletes ← {(boundary, ∅)}
8: inserts ← {(boundary, c) | c ∈ α,
9: PARSER(string[:boundary]+c) ∈ { ▷, ✓ }}

10: for fix in deletes ∪ inserts do
11: new str ← APPLYFIXES(string, fixes + [fix])
12: new boundary ← BSEARCH(new str, parser)
13: if PARSER(new str[:new boundary]) =✓ then
14: if string[new boundary:] = ∅ then
15: return new str
16: ADD(pq, (string, new boundary, fixes + [fix]))
17: return ∅

step 2. Duplicate threads (those that result in the same
string) are discarded, keeping only those with the minimal
number of repairs. A response of ✓ is treated the same as
▷ if the remaining-suffix is non-empty.

The algorithm (Algorithm 2) returns as soon as the first
repair-candidate is found. However, one may also repeatedly
invoke the algorithm to produce an ordered ranking of further
repair-candidates.

A. ϵREPAIR in action
As an example, let us consider the following

input to the JSON processor from Table I:
{ "name": "Dave" "age": 42 }
1) ϵREPAIR starts by executing a binary search for the bound-

ary where the input prefix changes from ▷ to ⋫. The
boundary is obtained at index 17, providing the viable-
prefix { "name": "Dave" and the remaining-suffix
"age": 42 }

2) There are three possibilities for repair here. The first is to
delete the next character " from the remaining-suffix. This
however, does not change the parse-boundary, as the string
{ "name": "Dave" a still results in ⋫ response from
the JSON processor. The second is to insert a character. We
only insert characters that will lead to an improvement in
the parse-boundary. Here, the only possibility is ,, resulting
in the string { "name": "Dave" ,.

3) Extending the parse-boundary by appending
remaining characters in the remaining-suffix, we have
{ "name": "Dave" ,"age": 42 }, and the
response ✓.

Let us consider a second example, again from Table I:
{"ABCD":[*"1,2,3,4,5,6"]*}. We follow a single
repair thread for ease of explanation.
1) ϵREPAIR starts by finding the parse-boundary. This is ob-

tained at index 9, providing the viable-prefix {"ABCD":[
and remaining-suffix *"1,2,3,4,5,6"]*}.



2) ϵREPAIR then appends the next character * to the input,
resulting in {"ABCD":[* and observes the result. In this
case, the JSON processor returns ⋫.

3) Hence, the newly added character is discarded, and the
character at the next index is appended, resulting in
{"ABCD":[". JSON processor responds with ▷.

4) ϵREPAIR now appends the character in the next index,
forming {"ABCD":["1 and ▷ from the JSON processor.

5) Proceeding in this fashion, the input reaches
{"ABCD":["1,2,3,4,5,6"]* at which point,
we again have the response ⋫ from the JSON processor.
Hence, we discard this character, and try the next character,
resulting in {"ABCD":["1,2,3,4,5,6"]}.

6) The JSON processor responds with ✓.

Completing and demonstrating multi-fault repair by ϵREPAIR.
ϵREPAIR Limitations. Let us now examine two cases where
ϵREPAIR has counter-intuitive behavior. Consider the input
{ "item": "Apple", "price": ***3.45 }.

1) As usual, ϵREPAIR starts by finding the parse-
boundary, and the viable-prefix which is
{"item": "Apple", "price": , followed by
the remaining-suffix ***3.45 }.

2) Since * is not a valid character to add, ϵREPAIR deletes this
character. Deletion of the two remaining characters will re-
sult in {"item": "Apple", "price": 3.45 },
which is accepted by the JSON processor.

3) However, we also have possible characters that can be
inserted at the first parse-boundary, which results in
a parse-boundary extension. That is " will extend the
parse-boundary to
{"item": "Apple", "price": "***3.45 }.
On continuation, ϵREPAIR finds that the following result
with three insertions also results in an accepted string.
{"item": "Apple", "price": "***3.45 }"}.

That is, there may be multiple repair candidates, and as
ϵREPAIR operates without human intervention, it is unable to
distinguish the semantics, affecting optimality of repair.

Another example is the input "abcd":[1,2,3]}.

1) ϵREPAIR starts by finding the parse-boundary and the
corresponding viable-prefix, which is "abcd".

2) The possible extensions are to delete : or to insert one
of the characters at this point. Unfortunately, none of the
characters in the alphabet can increase the parse-boundary.
Hence, the only option that is possible is to continue to
delete characters from the remaining-suffix. This leads to
the string "abcd", which is suboptimal.

That is, ϵREPAIR can also result in suboptimal repairs.
A final example is the input "[1,2,3,4].

1) ϵREPAIR starts by finding the parse-boundary and the
corresponding viable-prefix, which is "[1,2,3,4].

2) The possible extension here is to append a character ",
leading to the string "[1,2,3,4]".

That is, it ignores the possibility of deletion of the first
character as the correction even though that can produce to an

optimal repair-candidate. We next discuss a mitigation strategy
trading performance for accuracy.
Extended ϵREPAIR. When ϵREPAIR obtains an ▷ or ✓
response from the parser, it assumes that there can be
no repairs in the viable-prefix thus obtained. However, as
we saw, this need not be the case. For example, given
"abcd":[1,2,3]}, the parser returns ✓ for the string
"abcd". However, as we found, a repair inserting { in the
string beginning, resulting in {"abcd":[1,2,3]} can lead
to more data recovery. To allow such repairs to take place, we
extend the ϵREPAIR potential candidates as follows.

When ϵREPAIR obtains an ⋫ response from the parser, we
create repair-candidates not only at the end of the viable-
prefix, but also at all points in the viable-prefix. That is, given
the corrupt string, "abcd":[1,2,3]}, when we obtain
⋫ with "abcd":, all the following locations indicated by
red cursors are candidate locations for inserts; 1) "abcd":

2) " abcd": 3) "a bcd": 4) "ab cd": 5) "abc d":

6) "abcd ": 7) "abcd" :. Similarly, each character next
to the red cursor becomes a potential candidate for deletion.
The problem with this approach is that it may lead to numerous
repair-candidates, with each location potentially having multi-
ple candidates. That is, if we have n characters in the language,
then each location can at worst produce n+1 candidates, and
a viable-prefix of length l can result in l× (n+1) candidates.
Hence, heuristic strategies are needed to reduce the number
of repair-candidates. Such heuristics may be program or data
specific. In our current empirical evaluation, we only use
the simple ϵREPAIR, with no additional extensions. However,
additional heuristics are one of the future research directions.
Post-processing. Another strategy is post-processing.
ϵREPAIR can generate multiple repair-candidates, only one
of which may be acceptable. For example, while ϵREPAIR
may generate both {"item": "Apple", "price":
"***3.45 }"} as well as {"item": "Apple",
"price": 3.45 } (both 3 edits from the corrupt string),
only one may be correct. Hence, we provide a ranked list
of repair-candidates (ordered by repair-distance) to the user
along with the details of repair. Users can do their own
post-processing to identify the best candidate if needed.
This is in line with the standard industry practice used by
error-correcting parsers [23]–[25].

Similarly, ϵREPAIR can synthesize tokens that let the parse
continue, and produce valid records. However, tokens thus
produced do not hold semantic information. Hence, during
post-processing, we expect to replace synthesized data with
semantic content with placeholders as provided by the user.

IV. EVALUATION

How does ϵREPAIR compare with state-of-the-art? We pro-
pose the following research questions which are designed to
investigate the effectiveness of ϵREPAIR in several dimensions.

A. Research Questions

We aim to evaluate the effectiveness of ϵREPAIR in com-
parison to existing techniques. While several input rectification



approaches rely on learning input features from examples or
utilize input specifications, few focus exclusively on parser-
based strategies. Among parser-centric, format-agnostic repair
techniques, DDMax is the primary competitor to ϵREPAIR.
However, the two approaches have differing requirements:
DDMax depends on the ability to delete input fragments
effectively, whereas ϵREPAIR requires accurate error feedback
from the parser. As a result, although there is significant
overlap in the types of inputs they can handle, not all subjects
repairable by ϵREPAIR can be repaired by DDMax, and vice
versa. Notably, the subjects used in Kirschner et al. [19] lack
precise error feedback, rendering them unsuitable for direct
repair using ϵREPAIR. Hence, we use a set of real-world
parsers for evaluation that allows applying both DDMax as
well as ϵREPAIR.

The input languages of our subject programs are also
available in ANTLR format, and ANTLR provides the error-
feedback that is required by ϵREPAIR. This allows us to
ask: How does ϵREPAIR compare against format-dependent
techniques such as DDmaxG and ANTLR? Hence, for the
following RQs, we compare the effectiveness of ϵREPAIR
against (a) DDMax and (b) DDmaxG and (c) ANTLR.

One of the most important questions regarding repair is the
quality of repair. A repair is not useful if it results in discarding
most of the data in the original record. Hence, we ask:
RQ1: What is the quality of data repair by ϵREPAIR in
comparison to its competitors?

The second question we ask is whether the data can be re-
covered at all. That is, can the repair produce valid candidates:
RQ2: How many corrupt records can be repaired by
ϵREPAIR in comparison to its competitors?

A third question that is relevant in this space is efficiency.
That is, while it is expected that a more intelligent algorithm
may take more runtime, it should be within practical bounds.
Hence, the third research question is:
RQ3: How does ϵREPAIR compare to DDMax in perfor-
mance? We next discuss our evaluation strategy.

B. Subject Programs

TABLE II: Subject programs used in the evaluation

LOC Parser Lang. Input Format Development
ini 511 C INI 2009-2022
cjson 3413 C JSON 2009-2022
sexp 978 C SExp 2016-2016
tinyc 421 C TinyC 2011-2018

TABLE III: Number of corrupt inputs

Record Len. Single Corr. Double Corr. Truncated
INI 102.0 ± 20.4 1000 100 100 (29.1%)
JSON 146.6 ± 46.6 1000 100 100 (26.7%)
SExp 66.8 ± 31.2 1000 100 100 (26.8%)
TinyC 45.3 ± 20.4 1000 100 100 (24.8%)

Average truncated suffix length is indicated with parentheses.

To enable accurate assessment, we investigated the effec-
tiveness of ϵREPAIR on several real-world parsers such as ini

(INI), cjson (JSON), sexp (SExp), and tinyc (TinyC).
Details are given in Table II. These were first compared
against the format-agnostic competitor DDMax. Each parser is
moderately large (between 500 LOC to 3500 LOC), relatively
mature (7 to 14 years of development), and written in C.

Next, to understand how ϵREPAIR performs against error
recovery from general parsers, and data repair using format-
dependent techniques, we investigated the effectiveness of
ϵREPAIR against the format-dependent techniques such as
DDmaxG and ANTLR on the same subjects.

Finally, regular expression matchers such as PCRE provide
the parse-error feedback ϵREPAIR needs for repair. While
the formal format is technically available, regular expression
matchers do not provide the parse tree that DDmaxG requires,
nor is the grammar available to be used with ANTLR. The
format-agnostic DDMax is unusable against regular expres-
sions because they do not provide a successful waypoint that
is required by DDMax. Hence, as ϵREPAIR is the only
technique able to repair data that is described by regular
expressions, we investigate and benchmark the effectiveness
of ϵREPAIR for several common data formats that are de-
scribed by regular expressions (taken from RegExLib).

C. Test Data

We initially considered using real-world corrupt data, sim-
ilar to the DDMax evaluation [19]. However, a key limitation
of such data is the absence of a reliable ground truth. To
verify the success of a repair, we must compare the repaired
content to the original content—merely passing the parser
without errors is insufficient. In particular, we aim to dis-
tinguish between simply deleting parts of the original string
to eliminate corruption and actually replacing corrupt data
with valid content. Without access to the original data, this
distinction is impossible to make.

Therefore, we opted to use valid records for each input
format under test, intentionally corrupt these records, apply
repair algorithms, and then compare the results to the originals.
Using Github API, we collected 450 INI files, 666 JSON
files, and 820 SExp files. For tinyc, due to its limited
adoption and the scarcity of real-world data, we generated
complex strings conforming to the TinyC grammar using
random generation.

We sampled 100 valid records for each format. Further
details are provided in the Record Len. column of Table III.
Single corruption. First, we evaluated the effectiveness of
ϵREPAIR in fixing simple corruptions. For each of the records,
we induced a single character corruption by either (1) deleting,
(2) substituting, or (3) inserting a single character. If the
corruption did not result in a parse error, another corruption
was induced on the original string as a replacement, and the
process continued until we had a corrupt record with a single
corruption. For each input record, this process was repeated
ten times, resulting in a total of 10 × 100 = 1000 corrupt
records per format (column Single Corr. in Table III).
Double corruption. To simulate more complex, real-world
scenarios where multiple consecutive locations are affected,
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we induced corruptions involving two consecutive characters.
These are summarized under Double Corr. in Table III.

One of the challenges in data repair we observed is that
its effectiveness diminishes as the number of corruptions
increases. Each additional corruption makes repair computa-
tionally expensive and increases the risk of altering structural
information in ways that impair accurate reconstruction, es-
pecially on the interpretation of the remaining data. Conse-
quently, we limited our experiments to cases involving up to
two random corruptions.
Truncations. An exception to the above limitation is trunca-
tion, where only a prefix of the original record is preserved.
In such cases, the interpretation of the truncated data remains
straightforward because structural anomalies introduced in the
suffix do not affect the surviving data. Truncation is common
during interrupted network transmission, where only partial
data may be transferred. To simulate this, we truncated each
record at a random index after the midpoint and evaluated
ϵREPAIR ’s ability to reconstruct a valid record from the
preserved prefix. Truncation in Table III has the details. The
average length of data deleted is provided in parentheses.

D. Baseline Comparisons

We compare ϵREPAIR to the following repair techniques:

Format-free. As ϵREPAIR does not require the format spec-
ification to repair data, we need to compare it to similar
techniques that do not require a format specification.

(1) Lexical DDMax: Lexical DDMax by Kirschner et
al. [19] is the only option for format-free data repair. It is
labeled as DDMax in all tables.

Format-dependent. While ϵREPAIR is designed to be used
when the formal data-specification is not available, it can also
be used to repair data when the data-specification is available
by leveraging the general parser feedback. Hence, we compare
it to the following format-dependent techniques.

(2) Syntactic DDMax: The DDMax based on grammar
(represented as DDmaxG in all tables) is a counterpart to
Lexical DDMax that uses the grammar specification to parse
the incoming data, and leverages the parse tree thus obtained
for data repair [19].

(3) ANTLR: As ANTLR provides its own error repair, we
also use ANTLR as a baseline.

E. Platform

Experiments were conducted on Mac M2 Ultra with 192
GB RAM.

F. Research Protocol

We ran each repair technique on each file and collected
metrics. We set a time limit of four minutes per record for
ϵREPAIR. The other techniques did not require a timeout.

TABLE IV: Distance between corrupt data and repaired data.
The highlighted values indicate best repair.

Format-free Format-dependent
Subject ϵREPAIR DDMax DDmaxG ANTLR

Si
ng

le

INI 1.4 ± 0.8 2.5 ± 3.0 26.2 ± 6.4 25.0 ± 5.6
JSON 5.1 ± 19.0 26.0 ± 43.7 48.5 ± 31.5 40.4 ± 24.3
SExp 10.3 ± 19.0 7.6 ± 14.7 36.9 ± 27.2 N/A ± N/A
TinyC 4.1 ± 6.5 9.2 ± 13.5 25.1 ± 11.7 21.8 ± 10.4

D
ou

bl
e INI 1.5 ± 0.9 3.0 ± 3.4 26.6 ± 6.8 24.8 ± 5.7

JSON 7.0 ± 24.3 43.0 ± 52.1 50.1 ± 32.6 40.0 ± 27.0
SExp 12.0 ± 19.5 10.9 ± 16.7 39.5 ± 27.3 N/A ± N/A
TinyC 6.6 ± 5.1 27.6 ± 15.4 27.3 ± 12.5 20.7 ± 10.8

Tr
un

ca
te

d INI 1.0 ± 0.0 2.0 ± 1.9 18.6 ± 5.0 17.8 ± 4.6
JSON 3.3 ± 1.5 74.3 ± 29.6 83.2 ± 34.6 N/A ± N/A
SExp 1.8 ± 0.4 22.2 ± 18.7 35.2 ± 22.1 N/A ± N/A
TinyC 1.9 ± 0.8 22.3 ± 9.0 28.0 ± 9.7 N/A ± N/A

Average 5.1 ± 13.9 13.5 ± 27.3 35.0 ± 24.8 29.0 ± 17.4
Recovery 94%± 0.2% 83%± 0.3% 80%± 0.2% 91%± 0.1%

V. RESULTS

RQ1: What is the quality of data repair by ϵREPAIR and
its competitors? To answer this question, we collected all
corrupt data-records that could be successfully repaired by
each technique. Next, for each such record pair, we computed
the edit-distance between the corrupt record and the repaired
record. This is given in Table IV. The standard deviation is
given after the symbol ±. The best overall values are marked
in bold. The overall average is given in the last row.

The data obtained indicates that ϵREPAIR, when it repairs
records, does so with the least amount of modifications. This
is true across all kinds of corruptions, and across all formats
except in the case of SExp-single and SExp-double. In
these two cases, there is very little difference between the
mean values for ϵREPAIR and DDMax when considering the
standard deviation. In all other cases, there is a stark difference
in favor of ϵREPAIR.

Overall ϵREPAIR repairs required on average 5.1 edits to
the given record compared to 13.5 for DDMax, and 35.0 for
DDmaxG. The corrections made by ANTLR were on average
29.0 edits away.3

Overall, ϵREPAIR produces the best repairs, requiring only
5.1 edits of the corrupted record on average, which is 2.6 ×
better than the nearest competitor DDMax with 13.5 edits.

Recovery of Data. A key concern when attempting data repair
is how much of the original data can be recovered. That is, (1)
how much of the original data needed to be thrown away as
corrupt, and (2) how much of new data needed to be added to
make the record valid. This can be empirically evaluated by
tabulating the delete operations in computing the edit-distance.

In Table IV, the Recovery row shows how much of the
data from the original string remains in the repaired string.
Given original string length of L, and the deleted data length
of d, this is computed as mean(L−d

L ). Our results show that
ϵREPAIR recovers 94% of the original data. In comparison,
DDMax could only recover 83% of the original data. That

3Note that this is based on repaired inputs. ANTLR repaired noticeably
fewer records compared to other techniques.



TABLE V: Distance from original data to repaired data

Format-free Format-dependent
Subject ϵREPAIR DDMax DDmaxG ANTLR

Si
ng

le

INI 2.4 ± 0.8 3.3 ± 2.7 27.3 ± 6.3 25.8 ± 5.6
JSON 5.3 ± 19.0 26.1 ± 43.6 48.5 ± 31.5 40.4 ± 24.3
SExp 13.3 ± 19.2 8.6 ± 14.5 37.4 ± 27.0 N/A ± N/A
TinyC 4.1 ± 6.5 9.2 ± 13.5 25.0 ± 11.8 21.4 ± 10.4

D
ou

bl
e INI 3.5 ± 0.9 4.8 ± 3.0 28.2 ± 6.8 26.6 ± 5.7

JSON 7.8 ± 24.2 43.7 ± 51.6 50.7 ± 32.4 40.6 ± 27.0
SExp 13.3 ± 19.3 12.5 ± 16.3 39.3 ± 27.4 N/A ± N/A
TinyC 6.5 ± 5.2 27.6 ± 15.4 27.1 ± 12.5 20.4 ± 10.7

Tr
un

ca
te

d INI 28.1 ± 15.9 30.6 ± 16.2 45.5 ± 15.6 44.7 ± 15.0
JSON 35.1 ± 23.1 111.9 ± 35.3 121.8 ± 41.7 N/A ± N/A
SExp 15.7 ± 11.4 40.1 ± 24.0 51.1 ± 27.1 N/A ± N/A
TinyC 7.8 ± 7.6 36.6 ± 13.4 39.1 ± 11.7 N/A ± N/A

Average 7.0 ± 15.4 16.0 ± 29.8 37.2 ± 27.2 30.4 ± 17.7
Recovery 92%± 0.2% 82%± 0.3% 79%± 0.2% 90%± 0.1%

is, the repair by ϵREPAIR shows an improvement of 11% (or
2.8× reduction in data loss) over repair by DDMax.
Detailed Evaluation of Repair Quality. A corrupt data record
has likely originated from an intact one, and the repair quality
should be judged not just by the repair distance, but also by
how close the repaired data are to the original data.

The edit-distance between intact records and their repairs
from the competing techniques is given in Table V.

Our data shows that ϵREPAIR repairs are closest to the origi-
nal data. This is true across all kinds of corruptions, and across
all formats except for SExp single and double corruptions, and
INI truncation. We also find that in these exceptional cases, the
mean difference is very little between ϵREPAIR and DDMax
when considering the standard deviation.

Overall ϵREPAIR produced repairs that were on average 7.0
edits away from the original record compared to 16.0 for

DDMax, an improvement of 2.3×.

RQ2: How many corrupt records can be repaired by
ϵREPAIR? This experiment compares the number of files
repaired by ϵREPAIR with both format-free and format-
dependent techniques. The results are tabulated in Table VI.
The format-free and format-dependent techniques are sepa-
rated by a partition. The overall best values are marked in
bold type.

The results indicate that in format-free methods ϵREPAIR
was able to repair slightly more files on single corruption
records, while DDMax were able to repair slightly more
double-corruption records. For truncation, DDmaxG managed
to repair all records followed by DDMax and ϵREPAIR. In
general, the performance of DDmaxG is as expected because
DDmaxG operates with the knowledge of the input format.
As Kirschner et al. [19] observe, ANTLR does not reliably
perform data repair in any of the cases.

ϵREPAIR was able to repair 97% of all records, which is
comparable to 98% from DDmaxG and DDmaxG.

Perfect repair. While data recovery metrics offer some insight
into the quality of repairs, one key question remains: does the
repair fully and accurately restore the corrupted data?

TABLE VI: Number of Corrupt Records Repaired

Format-free Format-dependent
Subject ϵREPAIR DDMax DDmaxG ANTLR

Si
ng

le

INI 1000 1000 1000 884
JSON 999 971 982 703
SExp 966 1000 1000 0
TinyC 1000 984 984 481

D
ou

bl
e INI 100 100 100 91

JSON 98 99 98 68
SExp 94 100 100 0
TinyC 100 98 98 28

Tr
un

ca
te

d INI 100 100 100 B100
JSON 82 90 100 1
SExp 39 100 100 0
TinyC 82 77 77 4

Total 4660 4719 4739 2355

TABLE VII: Number of perfectly repaired files

Format-free Format-dependent
Subject ϵREPAIR DDMax DDmaxG ANTLR
INI 0 0 0 0
JSON 25 0 0 0
SExp 7 0 0 0
TinyC 63 0 0 0

TABLE VIII: Efficiency of data repair (Average)

Format-free Format-dependent
Metric ϵREPAIR DDMax DDmaxG ANTLR
Runtime 3.87 secs 2.7 secs 2.0 secs 0.3 secs
#Execs 897 787 569 N/A

We evaluated the number of records perfectly repaired by
each approach. That is, the repaired record is identical to the
original before corruption. Our results show that only ϵREPAIR
was able to achieve perfect repair for 95 records overall.
RQ3: How does ϵREPAIR compare to DDMax in perfor-
mance?

The runtime of all three approaches is shown in Table VIII.
The Runtime is DDmaxG is the fastest, with an average run-
time of 2 seconds and requiring around 569 parser executions
per repair. In comparison, ϵREPAIR is 1.9× times slower than
syntactic DDmaxG and 1.4× slower than DDMax.

The primary reason for the increased runtime in ϵREPAIR is
the additional insert repair operation, where each character in
the alphabet needs to be checked. This process can be time-
consuming, especially in formats with large alphabets. Despite
being 40% slower, ϵREPAIR’s average runtime of 3.9 seconds
per record remains practical for data repair (cf. Table VIII).

Although ϵREPAIR is 40% slower than DDMax, its average
runtime of 3.8 seconds per record is still practical for data

repair.

Our evaluation shows that ϵREPAIR outperforms DDMax
while relaxing the constraints placed on the parser.

A. Repairing regular data-formats

Data validation is commonly performed using
regular expressions. Corruptions in records vali-
dated by regular expressions cannot be fixed by
DDMax. For example, given the regular expression



TABLE IX: ϵREPAIR on regular expressions

Formats Total Success rate Repair-Distance
filepath 100 100% 0.96 (0.2)
date 100 100% 1.13 (0.7)
ipv6 100 100% 0.88 (0.4)
time 100 100% 0.90 (0.7)
url 100 100% 0.45 (0.5)
ipv4 100 100% 0.91 (0.5)
isbn 100 100% 1.67 (0.5)

[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]
and a non-conforming record 24-02-01 there is no
successful empty record for DDMax to start from, nor are
there any valid waypoints.

We investigated the effectiveness of ϵREPAIR against such
records, given in Table IX. Indeed, ϵREPAIR was able to
repair all corruptions, and we note that ϵREPAIR is the only
technique that can repair such records (i.e., no benchmark
to compare against).

We also noted that the data formats in Kirschner et al. [19]
were available as ANTLR specifications (with some varia-
tions). We further noted that the ANTLR parser can provide
the feedback required by ϵREPAIR. Hence, we evaluated
ϵREPAIR and competitors against these ANTLR parsers. The
results are provided in the Appendix. The results broadly
indicate the superiority of ϵREPAIR in data repair.

VI. DISCUSSION

Our evaluation shows that ϵREPAIR consistently outper-
forms DDMax and its format-dependent variant DDmaxG in
data repair. Our innovations are (1) the significantly relaxed
constraint in the subject parsers (avoiding valid waypoints,
and instead requiring valid parser feedback), (2) incorporating
a larger repertoire of repairs, and (3) while incurring a per-
formance penalty due to the increased intelligence, remaining
practical to use in large data dumps.

The ϵREPAIR algorithm can be applied for data repair in
any of the following circumstances:

1) You have a parser that provides reasonable feedback when
it encounters a parse error. Such parsers are common
in software engineering including standard handwritten
parsers, as well as regular expression matchers.

2) The parser can be instrumented to provide conforming
error-feedback which is often used in fuzzing [35].

3) A formal grammar or a regular expression is available
to validate the input, in which case, any of the gen-
eral context-free parsers can be modified to provide
the required error feedback, or a common library such
as PCRE can be used with the partial match feature
(PCRE_PARTIAL). Note that in comparison to DDmaxG
and ANTLR, ϵREPAIR only requires the general CFG
parser to provide feedback, and does not require a parse
tree to be constructed.

If any of these circumstances apply, then ϵREPAIR is an
optimal algorithm that can produce an optimal repair.

During our evaluation, we find that ϵREPAIR is able to pro-
duce consistently high quality repairs, and are able to produce

repairs that are closest to the original data before corruption,
an improvement of 2.3× over DDMax (c.f. Table V). Indeed,
ϵREPAIR is the only technique that achieved perfect repairs
achieved in several corrupted records (c.f Table VII).

A. Limitations of ϵREPAIR

While ϵREPAIR is an improvement over the state of the art,
it still has several limitations, which we discuss next.
Limitations due to closing. While ϵREPAIR produces better
repairs than its competitors in most cases, ϵREPAIR is less
effective than DDMax in some, especially when the input
format is highly recursive. This is what happens for SExp. In
this case, given an input such as (1+ ϵREPAIR needs to find
the closing ) to continue and to close the record. The issue
here is that the character ( is also a continuation, and if this
path is taken (1+( requires two closing ). As no character
is privileged (we do not assume anything about the alphabet
of the input format), closing the input can get progressively
difficult, which is reflected in Table VI.
Limited data repair. As with DDMax, ϵREPAIR only attempts
to recover as much data as possible from a corrupt record.
This means that there is a chance of spurious interpretation of
existing data (in the case of DDMax) and also incorporating
spurious data (in the case of ϵREPAIR, ANTLR and other
error-correcting parsers [23]–[25]), either of which may have
unintended semantic consequences. While this can be worked
around with a post processing step and user supplied valida-
tors, there is no guarantee that the end result is exactly the
same as the original. That is, both DDMax and ϵREPAIR run
the risk of further data-corruption and information distortion,
and the end-users should select the best semantically-fit repair
from the repair-candidates provided by ϵREPAIR.
Requirement for robust conforming parsers. When the
parser is non-conforming (i.e., does not provide ▷ and ⋫ feed-
back), ϵREPAIR is unable to use the parser feedback guidance.
This reduces the quality of repair drastically. However, in such
cases, ϵREPAIR can still repair those parts of the format that
are conforming to the feedback requirements.
Inability to work with context-sensitive constraints. Some
formats such as binary files require the format specification to
be context sensitive. That is, they require the content-length
to be specified before the content. For such formats, ϵREPAIR
is of limited use. Furthermore, some formats may require
checksums or hash values. Repairing such extra constraints
that are beyond context-free is impossible with ϵREPAIR.
Corruptions that do not introduce immediate parse-errors.
Some data corruptions do not introduce parse-error immedi-
ately. An example is the JSON string [[["]]], where the
" starts a string literal that simply continues accepting the
remaining characters. We note that, while this is a limitation,
this can be worked around either by adopting more extended
repairs or by limiting ϵREPAIR repairs to deletions if this
behavior is expected.

B. Applications of ϵREPAIR

Beyond large-scale data repair, there are a few more areas
ϵREPAIR could prove beneficial. These include:

https://github.com/Jacksadventure/epsilonrepair-artifact


• Interactive form validation: If form validation is accom-
plished by regular expressions, ϵREPAIR could suggest a
ranked list of minimal edits to users.

• Autocomplete: ϵREPAIR could perform well on IDE
auto-completion tasks, where the task is to provide an
autocomplete that best fits the current context.

• Compilers: ϵREPAIR could also offer principled code
fixes for syntax errors.

VII. RELATED WORK

A. Constraint-based Input Repair

These methods learn constraints from input data [36], [37]
or use specified constraints [38]–[40] to guide repair. The
difference from ϵREPAIR is that these constraints are learned
from sample inputs while with ϵREPAIR, the inputs are recti-
fied using the parser feedback.

B. Black-box Input Repair

DDMax [19] was the first black-box technique focused on
maximizing repair via deletion. ϵREPAIR builds on this by
adding insertion and using different parser feedback.

C. White and Gray-box Input Repair

Techniques like docovery [41] use symbolic execution,
while others analyze fault regions [42]. These require program
analysis, unlike the black-box ϵREPAIR.

D. Parser-directed Input Repair

Compilers/parsers often include error recovery [23]–[25],
[43], [44] using heuristics like symbol insertion/deletion/re-
placement [45]–[47], forward/backward moves [48], [49], or
panic mode. These often require grammars (ANTLR [25])
and prioritize continued parsing over optimal data recovery.
ϵREPAIR aims for minimal-edit recovery without necessarily
needing a grammar (if the parser provides feedback).

E. LLM-based Input Repair

LLM-based input repair [50]–[52] is likely to perform well
on common formats like INI, JSON, and SExp, especially
when examples of such data formats appear in training cor-
pora. However, our focus remains on algorithmic improve-
ments for several reasons. Algorithms can be invoked by
LLMs as tools, do not hallucinate, and are unaffected by model
choice, prompt design, or context length. They also offer
advantages in correctness guarantees, efficiency, transparency,
and generalization—making them reliable both as standalone
methods and as components within LLM-based pipelines. We
also note that it is also hard to find programs that are not
already in the training data for evaluation.

VIII. THREATS TO VALIDITY

External Validity. Our evaluation considered four common
data formats. However, we note that all our parsers are
implemented in C, and were chosen for the relatively precise
error feedback. This may not generalize well to parsers in other
programming languages or to parsers that provide coarser
or incorrect error-feedback, which can have an impact on

the repair quality. Furthermore, our evaluation focuses on
character-level edits based on a known alphabet–ASCII. Real-
world systems may require Unicode, or higher-level token
or semantic edits, which are not captured in our current
model. Additionally, while we simulate a range of corruption
types, our corruption model may not fully reflect real-world
corruption patterns, which can be clustered or domain-specific.
Internal Validity. Our implementation correctness and base-
line reimplementations are potential sources of bias. We miti-
gated this by testing against known cases and using public or
carefully reimplemented baselines, but undetected issues may
remain. All experiments were conducted on high-performance
Apple M2 Ultra hardware; performance may degrade on com-
modity or resource-constrained systems. We selected a fixed
four-minute timeout for repairs without sensitivity analysis. It
is possible that different time budgets would yield different
repair quality or coverage. We also terminate search after
finding the first valid repair, which may lead to suboptimal
results due to early search commitment.
Construct Validity. We evaluate repair quality using edit
distance, recovery percentage, and parser acceptance. These
measures capture structural similarity but not semantic cor-
rectness or fitness for downstream tasks. We do not include
human or domain-expert validation of repair utility, which
limits the interpretability of our results in practical settings.
While we generate ranked lists of repair candidates, we do not
quantify the risk of suboptimal candidates ranking higher than
semantically correct ones. Our method depends on parser feed-
back quality; we do not evaluate how imprecise or misleading
feedback affects repair outcomes. Future work should explore
ranking quality, human validation, and sensitivity to parser
feedback reliability to provide a more complete assessment.

IX. CONCLUSION

We present ϵREPAIR, a novel format-free data repair ap-
proach that leverages parser feedback (▷ vs. ⋫) to guide repair
through insertions and deletions. It relaxes the constraints of
DDMax (no need for valid empty states or waypoints) and
expands the repair capabilities.

Our evaluation demonstrated that ϵREPAIR achieves sig-
nificantly higher-quality repairs than DDMax (2.6× better
corrupt-to-repair distance, 2.3× better original-to-repair dis-
tance) and reduces data loss by 2.8×, with only a 1.4× runtime
overhead. It uniquely achieved perfect repairs in 95 cases and
successfully repaired data validated by regular expressions,
where DDMax fails. ϵREPAIR offers a practical, robust, and
more effective alternative for automatic data repair when
format specifications are missing or unreliable.

Our implementation, data and results are available here:

https://github.com/Jacksadventure/epsilonrepair-artifact
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