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Abstract—Software engineers primarily use two orthogonal
means to reduce susceptibility to faults: software testing and
static type checking. While many strategies exist to evaluate the
effectiveness of a test suite in catching bugs, there are few that
evaluate the effectiveness of type annotations in a program. This
problem is most relevant in the context of gradual or optional
typing, where programmers are free to choose which parts of
a program to annotate and in what detail. Mutation analysis
is one strategy that has proven useful for measuring test suite
effectiveness by emulating potential software faults. We propose
that mutation analysis can be used to evaluate the effectiveness of
type annotations too. We analyze mutants produced by the MutPy
mutation framework against both a test suite and against type-
annotated programs. We show that, while mutation analysis can
be useful for evaluating the effectiveness of type annotations, we
require stronger mutation operators that target type information
in programs to be an effective mutation analysis tool.

I. INTRODUCTION

Reliability is a core concern in software engineering. Static
type systems address this concern by providing a lightweight
way to prove the absence of a restricted class of errors [1,
p- 11. Software testing offers a complementary set of trade-
offs for addressing software reliability: by evaluating parts
of a program with a variety of inputs and checking that the
program returns the expected outputs, software testing provides
a flexible way of addressing a larger class of errors, but is
more labor intensive and cannot prove the absence of bugs [2].

There are several metrics for evaluating the quality of a
software test suite. For example, code coverage measures the
percentage of program code that is executed when running the
test suite [3]; in general, higher is better since a test suite will
certainly not catch any bugs in untested code.

At first glance, it seems like such program-level metrics
do not make sense in the context of static type systems. If a
language has a (sound) static type system, then any program
in that language is guaranteed to be free from the class of
errors excluded by the type system. Of course, there are ways to
judge the quality of the type system itself (e.g. more expressive
types can express more sophisticated properties and rule out
larger classes of bugs), but these are language-level rather than
program-level concerns. However, in any language with explicit
type annotations and subtyping, there is a question of how
specific a type annotation should be, and this program-level
concern has an impact on software reliability. Additionally,
several recent languages feature optional or gradual type
systems [4], which enable mixing static and dynamic typing
through the use of optional type annotations. In this setting, it

makes sense to ask how the set of type annotations provided
impacts the reliability of a particular program.

To illustrate the need for metrics to evaluate the quality of
type annotations, consider the following example in Python,
taken from the documentation of the optional typing feature.'

def broadcast (msg: str, srv: List[Any]) -> None:

In this example, the parameter srv is annotated to have type
List [Any], where Any represents any type. Thus, srv can be
instantiated by any list. A more specific type for this program is
illustrated in the following example, where we define a several
type aliases to represent connection options, addresses, and
servers, then refine the type of srv to be a list of servers.

ConnectionOptions = Dict[str, str]
Address = Tuple[str, int]
Server = Tuple[Address, ConnectionOptions]

def broadcast (msg: str, srv: List[Server]) -> None:

Obviously the initial List [Any] type annotation is easier to
write, but the more elaborate annotation is probably more
effective at preventing bugs. Observe that there is a partial order
among type annotations in terms of specificity that corresponds
exactly to the subtyping relation on the corresponding types.
As another example, consider the following program, which
is a subject in the study described in Section II.
def hashtags(jr: Dict[str,
—-> Tuple[int, List[str]]:
ht = jr.get ("entities’, {}).get (’hashtags’, [])

hashtags = sorted(set (h[’text’] for h in ht))
return jr[’ctime’], hashtags

Any])

The parameter jr is annotated as a dictionary from strings to
Any, but it is more specifically expected to be a dictionary of
JSON objects (encoded as Python records). We could make the
effort to define a JSON type alias, which precisely describes the
form of the expected argument, but is this effort worthwhile?
That is, will it make our program more reliable?

Given the spectrum of possibilities for a type annotation,
what do we gain from refining a low-effort, less specific
annotation to a high-effort, more specific annotation? Do
we at some point suffer from diminishing returns? At what
stage should we stop trying to refine our types, but instead
focus on writing better tests? Is it better to prioritize high
coverage with less specific annotations, or to focus on more
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specific annotations in well-chosen places? To answer these
questions, we need a way to measure how effective a particular
set of type annotations are at preventing bugs, and also to
compare the effectiveness of type annotations against other
reliability strategies, such as test suites, property-based tests,
and contracts.

Mutation analysis is a way of evaluating the quality of a
test suite by injecting faults into a program and counting how
many of the injected faults are caught by the test suite [5].
Our idea is to repurpose mutation analysis to evaluate the
quality of the type annotations in a program by counting how
many (and observing which kinds) of the injected faults can
be statically ruled out by the type system. Our hypothesis is
that higher coverage and more specific type annotations will
lead to catching more of the injected faults.

Work on property-based testing (PBT) [6], [7] provides
tangential evidence that mutation analysis is a good fit
for evaluating the quality of type annotations. In PBT, the
programmer writes executable properties that should always
hold within a program and the PBT framework generates
random inputs to test against these properties. PBT is therefore
a sort of midway point between testing and types since it
expresses general properties of a program, similar to types,
but is based on execution-based sampling rather than formal
verification, similar to tests. Previous work has shown that
the strength of properties can be evaluated using mutation
analysis [8], [9].

However, we also foresee some challenges for adapting
mutation analysis to evaluate the quality of type annotations.
The most significant is that existing mutation frameworks
probably do not generate the kinds of mutations needed to best
evaluate type annotations. Since early frameworks were written
in the context of statically typed languages, most mutation
operators are type preserving and so do not generate ill-typed
mutants if the original program is type correct. More generally,
due to their pedigree in software testing, mutation frameworks
focus on generating the kinds of faults that test suites are
written to test against, but these may not be the same kinds of
faults we expect our type system to catch.

In order to determine whether existing mutation frameworks
are already a good fit for evaluating the quality of type
annotations, we conducted a small study, described in Section II.
In the study, we evaluated two Python programs (twitter-
graph and w3lib) that had both adequate test suites and
type annotations that cover almost all of the functions. We
used MutPy, a Python mutation analysis framework with a
comprehensive set of mutation operators often used in academic
research [10], to evaluate the resulting mutants both using type
checker and test suites. Our results, described in Section III,
indicate that while mutation analysis can indeed be used to
evaluate the quality of type annotations, the current set of
mutation operators offered by MutPy are inadequate for this
task. Further, it is surprisingly difficult to come up with mutants
that actually describe subtle type faults.

Indeed, another possibility is that type annotations as
provided by tools such as Mypy provide little extra benefit

Operator | Description

AOD arithmetic operator deletion
AOR arithmetic operator replacement
ASR assignment operator replacement
BCR break continue replacement
CDI classmethod decorator insertion
COD conditional operator deletion
COI conditional operator insertion
CRP constant replacement

DDL decorator deletion

EHD exception handler deletion

EXS exception swallowing

IHD hiding variable deletion

10D overriding method deletion

j(0)4 overridden method calling position change
LCR logical connector replacement
LOD logical operator deletion

LOR logical operator replacement
OIL one iteration loop

RIL reverse iteration loop

ROR relational operator replacement
SCD super calling deletion

SCI super calling insert

SDI staticmethod decorator insertion
SDL statement deletion

SIR slice index remove

SVD self variable deletion

ZIL zero iteration loop

TABLE I: Mutation operators used by MutPy.

compared to a sufficient test suite. While there seems to be
some support for such a conclusion® [11], our research is still
in a very early stage for any such conclusions to be drawn.

II. METHODOLOGY FOR ASSESSMENT

To evaluate the utility of mutation analysis with respect
to type annotations, we chose two projects: our own twitter-
graph project [12] (83 lines of code in 10 functions fully
type annotated, and 25 test cases), and the open-source w3lib
project [13] (369 lines of code in 42 functions with 34 type
annotations, and 97 test cases) both using Python unittest
library. The test suite for twitter-graph has 99% statement
coverage, and 98% branch coverage; the test suite for w3lib
has 94.7% statement coverage, and 91.7% branch coverage. For
w3lib, we relied on the type annotations by the library author;’
for twitter-graph, we included as much type information as
possible by annotating all function signatures with the strictest
types possible.

We generated mutants for both projects using MutPy [14], a
comprehensive mutation framework available for Python [10],
[15], [16]. The MutPy mutators are listed in Table I. For both
projects, we evaluated each generated mutant using both the
test suite and the Python type checker Mypy [17].

For twitter-graph, we measured the number of mutants killed
by the type checker over a range of more strict to less strict type
annotations. We started with strictest possible type annotations,
then progressively generalized them over several steps by first
replacing the deepest basic types, such as int and str with

Zhttp://blog.cleancoder.com/uncle-bob/2017/01/13/Types And Tests.html
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twitter-graph w3lib
Operator | Types Tests Total | Types Tests Total
AOR 0 5 6 11 17 17
ASR 0 0 0 2 5 5
BCR 0 0 0 0 2 3
CDI 5 9 9 2 5 5
COD 0 5 5 0 2 3
CoIl 0 9 9 1 7 7
CRP 2 22 37 6 48 49
DDL 2 2 2 6 220 322
EHD 0 1 1 0 2 3
EXS 0 0 1 0 0 2
LCR 0 1 1 0 12 12
LOR 0 0 0 0 1 3
OIL 0 1 3 0 1 3
RIL 1 2 2 0 9 10
ROR 0 6 8 1 8 10
SDI 7 8 8 0 8 11
SDL 16 38 46 63 172 184
SIR 0 0 0 0 8 9
SVD 29 30 30 0 8 9
ZIL 0 3 3 2 10 10

TABLE II: Mutants killed by the type checker and the test
suite. Note that the mutants killed by the type checker are a
subset of those killed by the test suite.

Any, then replacing the innermost parameterized types with
completely generic parameters, such as List [Any] Of Dict [Any
,Any], with simply any until a single level of type annotations.
After each step of generalizing the type annotations, we re-ran
the Mypy type checker on the mutants.

III. RESULTS

The results of our analysis are given in Table II. Note that
some of the mutation operators in MutPy did not produce
any mutants for either project. We have excluded them from
Table II in the interests of brevity. For twitter-graph, we found
no difference between the mutants killed using the most strict
type annotations and the least strict type annotations. Further,
for both projects and for all operators, the mutants killed by
the type checker was a strict subset of the mutants killed by
the test suite.

IV. DISCUSSION

Our analysis yielded two surprising results: (1) the mutants
killed by the type checker were a strict subset of the mutants
killed by the test suite, and (2) simple type annotations were
just as effective at killing mutants as more sophisticated type
annotations. One reason for the first result is simply that our test
suites are good, that is, they have high coverage and stronger
oracles.* Since type errors are a subset of semantics errors, a
good test suite can be expected to catch many type errors.

A more interesting reason for these results is that the
mutation operators we used are targeted at evaluating test suites,
rather than type errors. The kinds of type errors produced by the
mutation operators are quite crude, usually raising a dynamic
type error as soon as the mutated code is executed. A test suite
with good code coverage will find all such type errors. And

4 Since it is developer written, the test cases can assert the exact value, not
just the type of values.

relatively simple type annotations can rule out such type errors
just as well as more sophisticated types.

A. Mutations that induce type errors

In the following, we enumerate the mutators that produced
ill-typed mutants during our analysis.

1) Arithmetic operator replacement: A typical AOR mutant
killed by the type checker is produced by the replacement
of the + operator by another arithmetic operator, in a context
where it is actually used for string concatenation.

+ print ("Hello" " World")

Another similar example is the replacement of the ¢ operator,
used for string formatting, by arithmetic operators.

+ print ("Hello %s" x "World")

2) Statement deletion: The SDL mutator can introduce a
type error by deleting the statement that initializes a variable
prior to its use. For example, in the following fragment y is
unbound, resulting in a type error.

-> int:

def square(x: int)

+ pass

return y
Perhaps surprisingly, deleting a return statement, as in the
following fragment, does not introduce a type error since a
Python function with no return statement implicitly returns
None, Which is a member of all types.
-> int:

def square(x: int)

+ pass

3) Self variable deletion: The SVD mutator deletes the se1f
receiver from an object field access.

class A(object):

def add(self, x: int) -> int:

+ y = x + val
return y

In the example above, the mutation turns the field access into a
reference to an unbound variable va1, resulting in a type error.

4) Decorator deletion and insertion: The DDL and SDI
mutators can introduce type errors when eproperty oOr
@staticmethod declarations are deleted or inserted, changing
the interface of the mutated classes. For example, in the
following fragment, the deletion of @staticmethod causes a
type error since the first argument to a non-static method is a
reference to the object itself, in this case of type a rather than
the declared argument type int.

class A(object):

def mymethod(x: int) -> int:

return x

a =20
a.mymethod ()
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5) Reverse iteration loop: A rather subtle type error encoun-
tered in our experiment was caused by the RIL mutator, which
reverses the order that elements are iterated over. This causes a
type error when looping over the entries in a dictionary, since
the dictionary iterator object doesn’t support reversal.

def tst (hd: Dict[str, str]):
+ for v in reversed(hd.items()) :
pass

6) Zero iteration loop: The ZIL mutator replaces a loop
body by a break statement. This triggered a type error due
to limitations of type inference in Mypy. In the following
fragment, after removing the call to append Mypy can no
longer infer that 1st is a list of strings, as required when it is
passed as an argument to join.

def mymethod(mystr: str) —-> str:

1st = []
for k in mystr.split (mystr):

+ break
return ’,’ .join(lst)

7) Constant replacement: The CRP mutator is restricted to
only replace constants with other constants of the same type,
so we did not initially expect it to produce any type errors.
However, Mypy statically checks format strings; mutating these
can produce static errors as illustrated below.

+ print ("" \% y)

B. Limitations of AST-level mutation

Mutation testing researchers rarely differentiate between
source-level mutation and AST-level mutation. Indeed, aside
from c-mutate [18] and mutation tools that operate on byte-
code, most mutation tools (such as Major [19], MutPy, and
MuCheck [20]) operate on an AST. An unfortunate consequence
is that this precludes many simple errors that programmers
make on the source level that correspond to large differences
in the AST, and so are out of scope for simple AST mutators.

For example, consider the following edit to fix a program by
moving a parenthesis. Although the source-level edit is minor,
the two programs have quite different ASTs so the incorrect
program will not be generated by a simple AST-level mutator.

+ root = (b + sqgrt(b**2 — 4xaxc)/(2xa))

Another observation is that AST-level operator replacement
mutations do not correspond to source-level operator replace-
ment mutations, due to operator precedence rules. For example,
the following two programs differ by one character but have
different shaped ASTs.

+ print ("Ex %$s’ % 1 * 2)

The initial version contains a rather subtle type error since
binds more tightly than +. This seems like a plausible mistake
a human could make but would not be generated from the
correct version with a simple AST-level operator replacement.

C. Toward new mutation operators

Our analysis revealed that MutPy does not generate the
mutants we need to evaluate the quality of type annotations.
Therefore, we propose extending MutPy with new mutation
operators that affect the types in mutants in new and more
varied ways. Related work by Lerner et al. [21] on systemati-
cally modifying programs that already contain type errors in
order to try to find a related well-typed program is relevant
here since their modifications necessarily impact the types. As
future work, we propose to extract type-affecting mutation
operators from their systematic program modifier.

More immediately, we propose several new mutation oper-
ators based on the preceding discussion. We illustrate each
mutation operator on Python, but the ideas can also be applied
to other languages. Further research is needed to verify that
these type-affecting mutators are indeed useful for evaluating
the quality of type annotations.

1) Enhanced constant replacement operator: Constant re-
placement should be extended to also substitute constants with
different types, as illustrated below.

def area(self):

+ return "" x (self.rx%x2)

2) Enhanced operator replacement: Operator replacement
should be adapted to simulate source-level operator replace-
ment, which may require restructuring the AST to account for
operator precedence.

+ print (YEx \%s’ \% 1 + 2)

3) Mutate parenthesis placement: A new mutator that
simulates human faults due to mistakes in parenthesis placement
in nested expressions. This mutation also involves locally
restructuring the AST.
+ print ("\%s’ \%

(("Example " + no + 1)))

4) Mutate variable names: A new mutator that modifies the
names of variables to simulate spelling mistakes.

def area(radius):

+ return Pi * radius_xx2

5) Mutate nesting: A new mutator that moves statements
in and out of nested blocks. In Python, this corresponds at the
source level to changing the indentation of a statement.

def squares(lst):
s = [1]
for 1 in 1lst:
v o= 1xx2

+ s.append( (i, V)

return s

6) Reorder function arguments: A new mutator that reorders
the arguments passed to a function.
n Ack n )

+ broadcast_message ([ ((’::1",10), {})1,



7) Disable function call: A new mutator that replaces the
invocation of a function by its lookup. In Python, this amounts
to removing the trailing parentheses so that the function itself
is returned, rather than its result.

+ val = myfunction

8) Add elements to containers: Mutator that add new
elements to containers. Elements may be of different types so
that the corresponding container type changes.

+ val = ["a’, 'b’, 1]

9) Change type of container: Mutator that replaces one type
of container by another, for example, replace a list with a set
or dictionary.

+ val =

{/a!’ Ib/}

V. THREATS TO VALIDITY

Our results are based on two small programs. These programs
were selected because they were the first Python programs to
be annotated with types. One of the programs was written
by the first author, and this is the only program used in the
analysis of strict vs. less-strict types. It is possible that these
biases and limitations confound our results, and so they do not
generalize to larger and more diverse programs. Our results are
also based on analysis in a single language (Python) using a
single mutation framework (MutPy), and so it is possible that
our observations do not generalize beyond Python and MutPy.

VI. RELATED WORK

The idea of mutation analysis was proposed by Lipton [5],
its concepts formalized by DeMillo et al. [22], and was first im-
plemented by Budd [23]. Previous research [24]-[26] suggests
that it subsumes different test coverage measures, including
statement, branch, and all-defs dataflow coverage. Research
also shows that mutants are similar to real faults in terms of
error trace produced [27], the ease of detection [28], [29], and
effectiveness [30]. The foundational assumptions of mutation
analysis—“the competent programmer hypothesis” and “the
coupling effect”—have been validated both theoretically [31]-
[33] and empirically [34]-[36]. Early work on mutation analysis
was in the context of statically typed languages. Recent work
has extended this to dynamically typed languages: Derezinska
et al. [10] studied mutators for Python, Li [37] for Ruby, and
Mirshokraie et al. [38] for Javascript. Aside from evaluating test
suites, mutation analysis has been used to evaluate property
based tests [9], specifications in theorem provers [39], and
comparing static analysis generators [40].

The only previous work that has looked at a metric for type
annotations in the context of gradual typing is Takikava et
al. [41]. They were focused on comparing the performance of
gradual type systems with annotations of different specificity,
whereas we are interested in investigating whether more specific
annotations are able to detect more faults.

In order to improve the ability of mutation frameworks to
catch bugs in real software, it is helpful to understand the kinds
of errors that programmers make in practice. An early study
by Youngs [42] directly lead to the first mutation operators
by Budd [23]. Ko et al. [43] enumerate many kinds of errors
that programmers make and provide a cognitive model for
these errors. The Blackbox is a dataset of errors made by
programmers using the BlueJ IDE. A summary of this dataset
was published by Jadud [44], which reports that 45.7% of Java
compilation errors would be undetected in Python. These are
errors that we think should be specifically targeted by mutation
operators. Another analysis of Blackbox by Brown et al. [45]
showed similar results. A part of this dataset (a years worth
of data totalling 37 million compilations) was analyzed by
Altadmri et al. [46], who found that invoking functions with
the wrong type was the second most frequent kind of error;
incompatible return arguments were also common.

Previous work on variational typing [47], [48] can provide
a means to efficiently type check a large number of mutant
programs at once. To support variational typing, mutation
operators can introduce fine-grained, local variation points
called choices [49], [50] between the original code and several
different mutated alternatives. Variational typing can then
efficiently type check every variant program that can be
produced by picking a particular mutation at each choice point.

VII. CONCLUSION AND FUTURE WORK

We evaluated the suitability of mutation analysis for mea-
suring the effectiveness of gradual type annotations in Python
programs. Our results indicate that while mutation analysis can
indeed be used in this manner, at least theoretically, the current
mutation operators do produce the kinds of faults needed to
elicit useful insights about typing annotations. We suggest
new mutation operators that can produce errors commonly
seen in type-incorrect programs. These operators need to be
investigated in the context of type annotations to ensure that
they are actually useful.

It is surprisingly difficult to come up with mutation operators
that can produce mutants with subtle type errors that are not
killed by the simplest of type annotations. One of the ultimate
conclusions of this line of work could be that more specific
type annotations do not provide much value over less specific
ones. However, much of the discussion in this paper focused
on how the limitations of the current generation of mutation
operators (adapted from research on statically typed languages
such as C and Java) may be biased towards generating mutants
that that do not contain interesting type errors.
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