
Input Algebras
Rahul Gopinath · Hamed Nemati · Andreas Zeller

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

Email: {rahul.gopinath, hamed.nemati, andreas.zeller}@cispa.saarland

Abstract—Grammar-based test generators are highly efficient
in producing syntactically valid test inputs and give their users
precise control over which test inputs should be generated.
Adapting a grammar or a test generator towards a particular
testing goal can be tedious, though. We introduce the concept of a
grammar transformer, specializing a grammar towards inclusion
or exclusion of specific patterns: “The phone number must not
start with 011 or +1”. To the best of our knowledge, ours is
the first approach to allow for arbitrary Boolean combinations
of patterns, giving testers unprecedented flexibility in creating
targeted software tests. The resulting specialized grammars
can be used with any grammar-based fuzzer for targeted test
generation, but also as validators to check whether the given
specialization is met or not, opening up additional usage scenarios.
In our evaluation on real-world bugs, we show that specialized
grammars are accurate both in producing and validating targeted
inputs.

Index Terms—testing, debugging, faults

I. INTRODUCTION

Software test generators at the system level (commonly
known as fuzzers) face the challenge of producing valid inputs
that pass through syntactic checks to reach actual functionality.
The problem is commonly addressed by having a seed, a
set of known valid inputs which are then mutated to cover
more behavior. For complex input languages, though, mutations
still mostly exercise syntax error handling. We can obtain
better performance by using a language specification such as
a grammar to produce inputs. As such inputs are syntactically
valid by construction, they reliably reach actual functionality
beyond parsing. The JSON grammar in Fig. 1, for instance,
produces only syntactically valid JSON inputs and thus quickly
covers JSON parser functionality.

Writing accurate input grammars can be a significant
effort [1], which is why recent research [2], [3] has started
extracting such grammars automatically from existing programs.
One less discussed advantage of language specifications,
however, is how much control they grant their users over which
inputs should be generated—actually, much more control than
for seed-based fuzzers. For our JSON grammar, for instance, a
user could go and assign probabilities to individual productions.
If the input should contain, say, several null values, users can
assign a high probability to null productions. Likewise, users
can customize the grammar. Adding an alternative expansion
"’); DROP TABLE STUDENTS; --" to the 〈string〉 rule
will quickly populate the generated JSON input with SQL
injections, for instance.

But there’s a catch. Adding individual specific alternatives
or adjusting probabilities is easy. But how about contextual

〈json〉 ::= 〈elt〉
〈elt〉 ::= 〈object〉 | 〈array〉 | 〈string〉 | 〈number〉
| ‘true’ | ‘false’ | ‘null’
〈object〉 ::= ‘{’ 〈items〉 ‘}’ | ‘{}’
〈items〉 ::= 〈item〉 | 〈item〉 ‘,’ 〈items〉
〈item〉 ::= 〈string〉 ‘:’ 〈elt〉
〈array〉 ::= ‘[’ 〈elts〉 ‘]’ | ‘[]’
〈elts〉 ::= 〈elt〉 | 〈elt〉 ‘,’ 〈elts〉
〈string〉 ::= ‘"’ 〈chars〉 ‘"’
〈chars〉 ::= 〈char〉 〈chars〉 | ε
〈char〉 ::= ‘[A-Za-z0-9]’
〈number〉 ::= 〈digits〉
〈digits〉 ::= 〈digit〉 〈digits〉 | 〈digit〉
〈digit〉 ::= ‘[0-9]’

Fig. 1: JSON grammar (simplified)

properties—say, a SQL injection only in a particular context?
How about negation—say, any kind of input except for specific
elements? And how about their combination? In principle,
such features can be expressed in a context-free language, and
hence in a grammar—but these grammars would be nowhere
as compact and maintainable as the example in Fig. 1.

In the past, the need for such control (also known as
taming) has been addressed by tweaking grammar-based test
generators—that is, adding special options (often ad hoc and
domain-specific) that address these concerns within the test
generator [4], [5], [6]. With the test generator being Turing-
complete, there is no limitation to what such options can do.
However, they also mean that one is tied to the particular tool
and its specific features.

In this paper, we address the problem of controlling grammar-
based test generators from the ground up. We introduce the
concept of a grammar transformer—a tool that takes a (simple)
context-free grammar and specializes it towards a specific goal.
As a result, we obtain a specialized context-free grammar,
which can then be used to produce specialized inputs with any
context-free grammar-based test generator [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. Also,
the grammar can be used with any context-free parser [21],
[22], [23], [24] for checking existing inputs whether they meet
the specialization properties.

To specify specializations, we introduce a language that

def jsoncheck(json):
if no_key_is_empty_string(json):

fail(’one key must be empty’)
if any_key_has_null_value(json):

fail(’key value must not be null’)
process(json)

Fig. 2: jsoncheck() fails if any key value is null or if no
key is empty.

allows us to specify which features should be part of the
specialized grammar and which ones should not. At the base
of our language, we have evocative patterns (or patterns
for short)—that form constraints over the values of specific
nonterminals. Such patterns take the form

〈nonterminal〉 is value

and are interpreted that there should be at least one instance
of 〈nonterminal〉 with value value. For our JSON grammar,
for instance, we can create specialized grammars
• where at least one 〈item〉 has a value of -1—that is,
〈item〉 is 〈string〉: -1. The resulting grammar produces
JSON strings such as { "foo": -1, "bar": 33 }.

• where at least one key should be named "zip", followed
by a 〈number〉—that is, 〈item〉 is "zip": 〈number〉. The
resulting grammar would produce JSON strings such as
{ "foo": "bar", "zip": 45 }.

• where at least one array should contain a null value—
that is, 〈elts〉 is null. The resulting grammar would
produce JSON strings such as { "foo": "bar",
"zip": true, "qux": [2, 1, null] }.

For more complex specializations, these patterns can be
combined into Boolean formulas. These evocative expressions
allows us to precisely specialize the produced inputs to match
specific conditions. As an example, consider the function
jsoncheck() in Fig. 2. The process() function is only
reached if no key has a null value and at least one key is
the empty string. To avoid the first branch to failure (“one key
must be empty”), we can use the evocative pattern

〈item〉 is "": 〈elt〉 (1)

This ensures that at least one item will have an empty key.
Avoiding the second branch to failure (“key value must not be
null”), we have to specify the absence of a pattern. We do so
by negation, expressing that no element matching the pattern
should be generated:

¬
(
〈item〉 is 〈string〉: null

)
(2)

To finally reach the process() function, both conditions must be
met. We obtain this by creating a conjunction of Equation (1)
and Equation (2):(
〈item〉 is "": 〈elt〉

)
∧ ¬

(
〈item〉 is 〈string〉: null

)
(3)

The resulting grammar will produce null values, but never as
the value of an 〈item〉; and ensure that at least one key name

is the empty string. Hence, its outputs will always reach the
process() function in Fig. 2.

To the best of our knowledge, this is the first work where
users of a test generator can specifically express the absence
and conjunction of patterns in given contexts. Going beyond
simple data languages like JSON, evocative patterns thus allow
us to produce very targeted inputs for testing compilers and
interpreters—say, a series of while loops that contain no
assignments; or SQL queries containing inner joins, left joins,
and right joins all in one.

This ability to express conjunctions and negations, all within
the grammar, may be come as a surprise: As context-free
grammars are not closed under conjunction or complement,
there is no way to transform a grammar into its negation. How-
ever, we show that our specialized grammars are closed under
conjunction, disjunction, and complement. Hence, Boolean
combinations of patterns result in algebras of specialized
grammars.

Besides controlling test generation, our evocative expressions
(which we call ewoks) can be used in various ways. For
example:

1) When used in debugging, the evocative patterns can
quickly generate test inputs that contain a given failure-
inducing input, validating fixes. This works particularly
well for abstract failure-inducing inputs —strings in which
specific parts are generalized to nonterminals, abstracting
over concrete values [25]—, which translate immediately
into evocative patterns.

2) When used in conjunction with abstract failure-inducing
inputs which represent specific program behaviors, our
evocative expressions can be used to generate inputs that
represent complex program behavior, that can be checked
for conformance. For example, one may mine abstract
inputs that represent the coverage of specific portions of
the program. The evocative patterns corresponding to such
abstract inputs may be used to produce complex evocative
expressions that correspond to inputs that (1) cover various
parts of the program, (2) does not cover specific parts
of the program, or (3) any combination where some
parts are guaranteed not to be covered, while other parts
are guaranteed to be covered. That is, with evocative
expressions, one can build complex oracles out of simpler
oracles.

3) When used with a parser, they can check whether a given
input meets a specified evocative expression—for instance,
to identify inputs that trigger a failure or vulnerability.

4) Evocative expressions can serve as query languages for
searching and capturing specific patterns in structured data.
Any of the above patterns could be used in a query.

5) Going further, evocative expressions might serve as
alternatives for regular expressions—especially as they
allow to express negation. Given their verbosity, structure,
and named subexpressions, evocative expressions may be
easier to read, write, and maintain than regular expressions.

6) Evocative expressions can serve as configuration language
to adapt generic configurations towards specific goals.

Features in software product lines, customizations of user
interfaces, and permissions in access control lists could
be combined in arbitrary ways.

This work opens the door towards giving developers simple,
yet powerful controls over what fuzzers produce, without re-
quiring them to modify fuzzer sources or rewrite grammars and
other specs from scratch. Beyond fuzzing, usages of specialized
grammars also include 1) generating targeted failure-inducing
inputs for validating fixes; 2) parsing inputs, checking whether
they contains a particular pattern (or combination thereof);
3) querying patterns in data (possibly even replacing regular
expressions); 4) configuring and customizing systems towards
specific goals.

After introducing basic definitions (Section II), the remainder
of this paper is organized along its contributions:
Abstract patterns. Section III introduces abstract patterns,

which form the base for grammar specializations.
Specializing grammars. In Section IV, we introduce the

algorithm for specializing grammars to contain at least
one instance of the pattern on any of the generated inputs.

Specialization algebras. Section V shows how to combine
specializations into algebras using Boolean operators.
We provide (partially mechanized) proofs that grammar
specializations are closed under disjunction, conjunction
and negation.

Implementation and usage. Section VI introduces Evogram,
a grammar transformer prototype that implements these
techniques, as well as usage scenarios for testing, debug-
ging, and adaptation.

Evaluation. In Section VII, we show that the specialized
grammars accurately produce and recognize inputs that
satisfy the given patterns.

Related work. Comparing to related work (Section VIII), ours
is the first approach that allows test generators to express
absence and conjunction of patterns in a given context.
In contrast to the closest related work [25], Evogram can
produce and recognize inputs that contain failure-inducing
patterns in arbitrary contexts.

As detailed in Section IX, Evogram and all experiments are
available for reuse and replication. We close with conclusion
and future work.

II. DEFINITIONS

The following definitions are based on [25].
Alphabet. The alphabet of the input language of a program

is the set of all symbols accepted by the program.
Input. A contiguous sequence of symbols from the alphabet

that is passed to a given program.
Terminal. A sequence of symbols from the alphabet. These

form the leaves of the derivation tree.
Nonterminal. A symbol outside the alphabet whose expansion

is defined in the grammar.
Rule. A finite sequence of terms (two types of terms: terminals

and nonterminals) that describe an expansion of a given
nonterminal.

Definition. A set of rules that describe the expansion of a
nonterminal or how the nonterminal is matched.

Context-Free Grammar. The context-free grammar is com-
posed of a set of nonterminals and corresponding defini-
tions that define the structure of the nonterminal.

Derivation. A terminal derives a string if the string contains
only the symbols in the terminal. A nonterminal derives
a string if the corresponding definition derives the string.
A definition derives the string if one of the rules in
the definition derives the string. A rule derives a string
if the sequence of terms that make up the rule can
derive the string, deriving one substring after another
contiguously (also called parsing). Generation is defined
complementarily [25].

Derivation Tree. An ordered tree that describes how an input
string is derived by the given start symbol. An abstract
derivation tree has some nodes marked as abstract, and
abstract nodes may not have child nodes.

Compatible Node. A node is compatible to another if both
have the same nonterminal. A tree is compatible to another
if both have compatible root nodes.

Reachable Nonterminal. A nonterminal a is reachable from
another nonterminal b if a is reachable from any of the
rules in the definition of b. A nonterminal is reachable from
a rule if 1) that nonterminal is present in the rule or 2) that
nonterminal is reachable from any of the nonterminals in
the rule. For example, 〈array〉 is reachable from 〈json〉
〈elt〉, 〈object〉, 〈items〉, 〈item〉, 〈elts〉 and also itself.

Subtree. For any node, a subtree is a tree rooted in any nonter-
minal reachable from that node. The characteristic node
of that subtree is its top most node and its nonterminal is
the characteristic nonterminal.

We also introduce the following new definitions, generalizing
beyond failure-inducing inputs to evocative inputs—that is,
inputs that trigger a specific program behavior.

Evocative Input. An input string is evocative or failure-
inducing, if on execution of the program with the string as
input, the program fails in a particular fashion or displays
an expected behavior.

Evocative Fragment. A fragment of an evocative input string
is evocative or failure-inducing if some property of the
fragment is the cause of the behavior or failure observed.
That is, we can transplant the subtree corresponding to
that fragment to a compatible node in another derivation
tree, and the corresponding string reproduces the same
behavior.

III. ABSTRACT PATTERNS

Our end goal is to generate specialized grammars that obey
given constraints. Our ongoing example will be the code
constraints from Fig. 2, requiring 1) that at least one JSON
object has an empty string as key, and 2) no JSON object has
null as a key value. In our pattern language, we can produce

〈json〉

〈elt〉

〈object〉

{ 〈item〉

〈string〉

” 〈chars〉

ε

”

: 〈elt〉

〈string〉

” 〈chars〉

ε

”

}

Fig. 3: Derivation tree for {"":""}

the following evocative expression from which a grammar that
obeys the given constraints can be produced.

〈jsonE∧N 〉 (4)
where 〈itemE〉 is "":〈elt〉 (5)

〈itemN 〉 is 〈string〉:null (6)

This expression is equivalent to the compound expression in
Equation (3). Here, 〈itemE〉 (5) represents the constraint of
Empty key, and 〈itemN 〉 (6) represents the constraint of Null
value. The expression 〈jsonE∧N 〉 represents the specialized
grammar with the combined constraint of at least one empty
key, and no null values in any generated input.1 In the rest
of the paper, this forms the running example, and we see how
each component of this expression is derived.

How do we relate these expressions to grammars? The
constraints are predicates on the derivation tree. That is
〈itemE〉 is "":〈elt〉 represents the constraint that a derivation
tree produced should contain an 〈item〉 node with two children.
The first should be an empty string, and the second could be
any 〈elt〉.

A. Finding Abstract Patterns in Derivation Trees

To derive the constraint E that represents a particular failure
condition, we start with an evocative input that induces the
expected failure: {"":""}. This will have a derivation tree
as given in Fig. 3. Are all parts of the input equally needed
to satisfy the constraint? Indeed, we can easily see that the
key value 〈elt〉 of value ’""’ can be replaced with any other
〈elt〉, and still induce the failure. That is, the following is an
abstract representation of inputs that induces the same failure:
{"":〈elt〉}. We note that this is exactly the abstract pattern
generated by DDSET [25].

That is, for any given derivation tree, the corresponding
abstract pattern is the abstract string representation where
the string representation of nodes marked as abstract are
the corresponding nonterminals (called an abstraction). For
example, {〈string〉:null} is an abstract pattern, and contains

1While both evocative patterns have 〈item〉 as the characteristic nontermi-
nal in this example, there is no such requirement. That is, 〈jsonE∨I〉 where
〈numberI〉 is 011〈digits〉 is allowed.

〈item〉

〈string〉

” 〈chars〉

ε

”

: 〈elt〉

(a) Abstract tree

〈itemE0
〉

〈stringE1 〉

” 〈charsE2
〉

ε

”

: 〈elt〉

(b) Specialized nodes

Fig. 4: Abstract trees for 〈itemE〉 is "":〈elt〉

〈string〉 as an abstraction of the corresponding input fragment.
When deriving an abstract pattern, a nonterminal also matches
the corresponding abstraction.

Such abstract patterns concisely and precisely specify what
parts of the input are important, and the abstract pattern is a
recipe for minimal and complete evocative inputs. However,
we are only interested in a smaller part of the corresponding
abstract derivation tree. We are interested in the smallest subtree
that when included in a larger input, induces the failure reliably.

B. Abstract Patterns to Evocative Patterns

So, what part of the derivation tree actually caused the
failure? On inspection, one can see that a much smaller part
of the derivation tree under the node for 〈item〉 is sufficient
to induce the failure. That is, one can replace an 〈item〉
node in any derivation tree with this node, and the resulting
string will induce the failure. That is, the subtree given in
Fig. 4a accurately captures the constraint. Such subtrees can be
represented by their characteristic nonterminal, and the string
representation of the rest of the tree, using nonterminal symbols
where abstract nodes are present. We call these evocative
patterns. For example, 〈itemE〉 is "":〈elt〉 is the evocative
pattern that represents the subtree given in Fig. 4a.

Given an abstract pattern, one can also automatically obtain
the characteristic node by simply looking for the smallest
subtree that contains all terminal symbols in the abstract pattern.
We use such evocative patterns in our evaluation. However, the
characteristic node obtained could likely be trimmed further to
produce a smaller subtree that can still induce failures reliably,
in a larger variety of contexts.

IV. TRANSFORMING GRAMMARS

We now show how one can transform the underlying
grammar such that any input generated from it would contain
at least one instance of the evocative pattern. The underlying
non-specialized grammar is called the base grammar, and
the definitions, rules, and nonterminals in that grammar are
called base definitions, base rules and base nonterminals
respectively. Note that we require base grammars to be non-
ambiguous. That is, any given string should have only a single
derivation. Transforming the grammar means to specialize it,
and this is accomplished by specializing each nonterminal,
the corresponding definition, and each applicable rule in the
definition. We describe specializations of nonterminals and
their corresponding definitions next.

Specialized nonterminal. A specialized nonterminal is a base
nonterminal name followed by a specialization suffix.
For example, given a nonterminal 〈itemN 〉, the 〈item〉 is
the corresponding base nonterminal (also called the base
representation of the specialized nonterminal) and the
subscript N is the specialization representing the evocative
expression. Note that a terminal cannot be a specialized.
Hence, the base representation of a terminal is always
itself. A term is same kind as another term if both have
the same base representation.
The subscript N is constructed as follows: An evocative
pattern is defined as

〈nonterminal subscript〉 is value

where subscript refers to the particular constraint repre-
sented by value. We use a related notation for specializa-
tion. We use 〈nonterminalsubscript〉 to denote a specialized
nonterminal where subscript is a Boolean expression of
the constraints acting on the given nonterminal. Note
that in terms of the context-free grammar, this is just
another identifier. A context-free grammar containing such
specialized nonterminals can be used exactly like any other
context-free grammar. For us, however, it is a unique and
expressive identifier that states the precise purpose.

Specialized definition. A specialized definition can have rules
with specialized nonterminals or some of the expansion
rules may be removed from the corresponding base gram-
mar definition. The following is a specialized definition
of 〈objectE〉, removing the empty object expansion, and
includes specialized nonterminals〈itemsE〉 and 〈itemsE1〉.

〈objectE〉 ::= ‘{’ 〈itemsE〉 ‘}’ | ‘{’ 〈itemsE1〉 ‘}’

Some of the specialized rules (such as above)
may have the same base representation rule –
〈object〉 ::= ’{’ 〈items〉 ’}’ in the above example. Such
a set of rules in a definition is called a ruleset for that
base rule, and such rules have same kind.

A. Translating evocative patterns to pattern grammars

We translate the abstract derivation tree rooted at charac-
teristic node to a grammar capable of producing instances of
the evocative fragment, using our JSON grammar (Fig. 1) as
running example. To do this, we specialize the non-abstract
nodes from the abstract tree with the evocative pattern name
and unique suffixes such that no two nonterminal symbols will
reuse the same name and suffix. For example, given the abstract
tree Fig. 4a, nodes are specialized in Fig. 4b. Next, with the
characteristic nonterminal (〈itemE0〉 here) as the start symbol,
this tree is collapsed into a grammar, children of each node
forming a single rule definition for their nonterminal.

〈itemE0〉 ::= 〈stringE1〉 ‘:’ 〈elt〉
〈stringE1〉 ::= ‘"’ 〈charsE2〉 ‘"’
〈charsE2〉 ::= ε

Next, we will see how the characteristic symbol of pattern
grammar (〈itemE0〉) is connected to the rest of the grammar.

B. Constructing a reaching grammar

1) Finding insertable positions: To be able to instantiate
instances of the evocative fragment, one needs to be able to
reach the characteristic nonterminal of the evocative pattern.
For example, to reach 〈item〉 in the JSON grammar, one has to
start from one of the following nonterminal symbols: 〈json〉,
〈elt〉, 〈object〉, 〈items〉, 〈item〉, 〈array〉, 〈elts〉.

For each rule in the grammar, we identify the nonterminal
terms that can reach the nonterminal of the characteristic node.
For JSON, the following (*) are the insertable positions.

〈json〉 ::= 〈*elt〉
〈elt〉 ::= 〈*object〉 | 〈*array〉
〈object〉 ::= ‘{’ 〈*items〉 ‘}’

〈items〉 ::= 〈*item〉 | 〈*item〉 ‘,’ 〈*items〉
〈item〉 ::= 〈string〉 ‘:’ 〈*elt〉
〈array〉 ::= ‘[’ 〈*elts〉 ‘]’

〈elts〉 ::= 〈*elt〉 | 〈*elt〉 ‘,’ 〈*elts〉

In the JSON grammar, 〈string〉 cannot reach 〈item〉. Hence, it
is unmarked. None of the other nonterminals have any rules
that can reach 〈item〉.

For the reaching grammar, we take each rule of a given
definition, and identify the insertable positions in the rule. Next,
for each insertable position, we produce a copy of the rule with
the nonterminal at the identified position specialized with the
evocative fragment name. The reaching definition correspond-
ing to the new specialized nonterminal is the collection of such
new rules. If the rule has no insertable positions, it cannot
derive evocative fragments. Hence, such rules are discarded.
If a nonterminal has no reaching rules, its definition is empty,
and it is discarded from the reaching grammar. The reaching
grammar is a grammar composed of reaching nonterminals
and their corresponding reaching definitions. The definition for
nonterminals in reachable grammar for E is as follows

〈jsonE〉 ::= 〈eltE〉
〈eltE〉 ::= 〈objectE〉 | 〈arrayE〉
〈objectE〉 ::= ‘{’ 〈itemsE〉 ‘}’

〈itemsE〉 ::= 〈itemE〉 ‘,’ 〈items〉 | 〈item〉 ‘,’ 〈itemsE〉
| 〈itemE〉

〈itemE〉 ::= 〈string〉 ‘:’ 〈eltE〉
〈arrayE〉 ::= ‘[’ 〈eltsE〉 ‘]’

〈eltsE〉 ::= 〈eltE〉 ‘,’ 〈elts〉 | 〈elt〉 ‘,’ 〈eltsE〉 | 〈eltE〉

C. Connecting pattern grammar and reaching grammar

For the final grammar, we merge the pattern grammar and the
reaching grammar, and use the start symbol from the reaching
grammar. The connection is made at the reaching characteristic
nonterminal (here, 〈itemE〉). We merge the definition from
the characteristic nonterminal of the pattern grammar (here,
〈itemE0〉) to the reaching nonterminal of characteristic node.
Note that 〈stringE1

〉 was previously defined and represents the
empty string.

〈itemE〉 ::= 〈string〉 ‘:’ 〈eltE〉 | 〈stringE1〉 ‘:’ 〈elt〉

〈item〉

〈string〉 : 〈elt〉

null

(a) Abstract tree

〈itemN0
〉

〈string〉 : 〈eltN1 〉

null

(b) Specialized nodes

Fig. 5: Abstract trees for 〈itemN 〉 is 〈string〉:null

V. ALGEBRA OF GRAMMAR SPECIALIZATIONS

Next, we discuss how arbitrary Boolean expressions can
be composed from other grammar specializations. We call
these evocative expressions. Again, consider the expression
introduced in Equation (4) that represents a specialized gram-
mar producing inputs that contain at least one empty key, and
does not contain a key value null. This will be our ongoing
example for specializations.

We first look at negation of grammar specializations. In the
grammar, we indicate negation by an over line. To illustrate
the algebra, we use the second pattern—at least one instance
of a null key value in the input. The abstract pattern from
which the expression is derived is {〈string〉:null}, and the
evocative pattern is 〈item〉 is 〈string〉:null. The abstract tree
is given in Fig. 5a, and its pattern tree in Fig. 5b. From this,
the specialized grammar contains all the above nonterminal
definitions, as well as

〈jsonN 〉 ::= 〈eltN 〉
〈eltN 〉 ::= 〈objectN 〉 | 〈arrayN 〉
〈arrayN 〉 ::= ‘[’ 〈eltsN 〉 ‘]’
〈objectN 〉 ::= ‘{’ 〈itemsN 〉 ‘}’
〈eltsN 〉 ::= 〈eltN 〉 ‘,’ 〈elts〉 | 〈elt〉 ‘,’ 〈eltsN 〉 | 〈eltN 〉
〈itemsN 〉 ::= 〈itemN 〉 ‘,’ 〈items〉 | 〈item〉 ‘,’ 〈itemsN 〉
| 〈item N〉

〈itemN 〉 ::= 〈string〉 ‘:’ 〈eltN 〉 | 〈string〉 ‘:’ 〈eltN1〉
〈eltN1〉 ::= ‘null’

Now we come to the actual definition of Boolean expressions.
We start with the axioms for terms, where we have two basic
requirements:

1) None of the operations can change the term type or kind.
2) In the case of two or more operands, operations are only

defined with respect to the same kind of terms.
We use 〈nonterminal >〉 (short: 〈nonterminal〉 or > where

unambiguous) to represent base nonterminal, and 〈nonterminal
⊥〉 or ⊥ for nonterminals with empty definition. Rules with ⊥
terms are removed recursively at the end of evaluation of the
complete expression.

A. Negation of a single term

Negation of a term means that if a term derived a given
substring, the negated term will not derive the same substring,
and vice versa. Negation of a terminal is empty. A nonterminal
with specialization is negated with respect to the specialization.
That is, 〈arrayE〉 represents elements in 〈array〉 not derived
by 〈arrayE〉. Negation of a base nonterminal is ⊥. Negation
of an empty nonterminal is >. That is, 〈item⊥〉 = 〈item〉.

B. Conjunction of two terms

The term from conjunction of two terms will only derive (any
and all) substrings derived by both the operands, and is defined
only for terms of the same kind. The conjunction between
two equal nonterminals is the same nonterminal, between >
and a specialized nonterminal is the specialized nonterminal,
between a nonterminal and its negation is ⊥, and between ⊥
and anything else is ⊥. For example, conjunction of 〈arrayE〉
and 〈arrayN 〉 is 〈arrayE∧N 〉 representing elements in 〈array〉
derived by both 〈arrayE〉 and 〈arrayN 〉.

C. Disjunction of two terms

The term from disjunction of two terms will only derive
(any and all) substrings derived by either operands, and is only
defined for terms of the same kind. The disjunction between
two equal nonterminals is the same nonterminal, between >
and a specialized nonterminal is >, between a nonterminal
and its negation is >, and between any nonterminal and ⊥
is the first nonterminal. For example, disjunction of 〈arrayE〉
and 〈arrayN 〉 is 〈arrayE∨N 〉 representing elements in 〈array〉
derived by either 〈arrayE〉 or 〈arrayN 〉.

D. Negation of a single rule

Negation of a rule produces as many rules as there are
specialized nonterminals each with one specialized nonterminal
negated, and the rules from negation of a specialized rule
will not be able to derive a string derived by the operand,
and vice versa. Say you have a rule 〈eltE〉 ‘,’ 〈eltsE〉. To
negate the rule, we take each specialized nonterminal, and
negate it one at a time. In this example, the result is two rules:
〈eltE〉 ‘,’ 〈eltsE〉 and 〈eltE〉 ‘,’ 〈elts E〉.
Proof: C 2A string derived by the operand could not have been
derived by any of the new rules because each rule contains
at least one nonterminal that will reject the corresponding
derivation. B If any new rule derived a string, at least one
nonterminal in operand will reject it3.

E. Conjunction of two rules

Conjunction is defined only between rules of the same kind,
and the result will derive (any and all) strings that could be
derived by both the operands. To produce a conjunction of two
rules, we line up both, and produce a conjunction of terms
from each at corresponding positions. That is, given two rules
〈eltE〉 ‘,’ 〈eltsE〉 and 〈eltN 〉 ‘,’ 〈eltsN 〉, the conjunction
is 〈eltE∧N 〉 ‘,’ 〈eltsE∧N 〉.
Proof: C Say the new rule derives a string. Pick an operand.
Each nonterminal in the deriving rule could be replaced by one
nonterminal in operand rule without affecting the derivation.
B Say a string is derived by both operands. That string could
be split into contiguous substrings such that each substring
is derived by either a terminal or corresponding nonterminals
from both operands. If two nonterminals derive the same string,
then their conjunction also derives it.

2 We use C and B to indicate the direction of the proof.
3The appendix for this paper contains a partial mechanization for proofs

in HOL4 [26].

F. Disjunction of two rules

Disjunction is defined only between rules of the same kind,
and the result will derive (any and all) strings that could be
derived by one of the operands. To produce a disjunction
of two rules, merge them or use each as alternatives in any
resultant definition. One may merge two rules into one if
the two rules differ only by a single specialized nonterminal
which is replaced by a disjunction of operand specializations.
Given two rules 〈eltE〉 ‘,’ 〈elts〉 and 〈eltN 〉 ‘,’ 〈elts〉, the
disjunction is 〈eltE∨N 〉 ‘,’ 〈elts〉. On the other hand, given
〈eltE〉 ‘,’ 〈eltsE〉 and 〈eltN 〉 ‘,’ 〈eltsN 〉, the disjunction
is exactly the same as original two rules.
Proof: C Pick any operand. The merged rule differs from
the operand rule in exactly one place, which is a superset of
operand specialization, any string derived by the operand could
also be derived by the new rule. B Any string that is derived
by the new rule can be split into contiguous substrings such
that each term in the new rule derives one substring. The new
rule differs from operand rules in exactly one nonterminal,
which is a disjunction of operand nonterminals.

G. Negation of a ruleset

The result of negation of a ruleset derives (any and all)
strings that will not be derived by the negated ruleset. Given
a ruleset with multiple rules, one has to only remember that
they are alternatives. E.g. S = R1|R2|R3. Hence, negation
is based on Boolean algebra. That is, R1|R2|R3 is same as
R1∧R2∧R3. Given that each rule negation results in multiple
alternates, we apply distributive law. That is the new ruleset is
as follows: {r1 ∧ r2 ∧ r3 : r1 ∈ R1, r2 ∈ R2, r3 ∈ R3}
Proof: C Any string derived by any of the new rules will be
derived by each of the negations because it is a conjunction
of one rule from negation of each rule. Since there cannot be
a string that is derived from both a rule and its negation, there
does not exist a derivation using the original ruleset. B Any
string that is derived by the original ruleset will not be derived
by the new because the new is composed of negations from
each rule in the original.

H. Conjunction of two rulesets

Result of conjunction of two rulesets derives (any and
all) strings derived by both of the operands. For conjunction
between two rulesets, we take one rule from each, and compute
the conjunction of both. The new rules will be all such
conjunctions: {r1 ∧ r2 : r1 ∈ S1, r2 ∈ S2}
Proof: C Any string that is derived by one of the rules in the
new ruleset will have been derived by at least one rule from
both operand rulesets. B If both operand rulesets derived the
same string, then there exist a rule in both that derived it, and
the new ruleset contains conjunction of all such rules.

I. Disjunction of two rulesets

The result of disjunction of two rulesets derives (any and
all) strings derived by any of the operands. Disjunction of two
rulesets is a new ruleset with rules from both, merging rules
that can be merged.

Proof: C Any string derived by the new ruleset will be derived
by a rule in at least one of the operands. B Any string derived
by a rule in a parent operand will be derived by new ruleset
because the same rule is there in the result.

J. Negation of a definition

The result of a negation derives (any and all) strings that
will not be derived by the operand. For negation of a definition,
any base rule that is not represented by a ruleset in the non-
negated definition is added directly to the negated definition.
These correspond to the rules with empty terms that we
discarded when the operand was produced. Then, negations
from each rulesets are combined together and added to the
negated definition. The negation of a definition is represented
by the negation of its corresponding nonterminal.
Proof: C Say a string was derived by the operand. A rule that
was not present in the original rulesets could not have derived
the string as part of the original non-negated definition. Hence,
non-represented rules could not derive a string that could be
derived by the operand. Next, all other rulesets are negations
of rulesets in the operand none of which can derive a string
derived by the operand. B If a string was derived by the new
definition, this string was either derived by one of the directly
added rules, in which case, there is no corresponding rule in
the operand, or by one of the negated rules, in which case, the
operand could not have derived it anyway.

K. Conjunction of two definitions

Result of conjunction of two definitions derives (any and all)
strings derived by both the operands. To produce a conjunction
of two definitions, the rulesets of the same kind from each
operand are paired up, and conjoined together, dropping those
that do not have a pair in either operand. The conjunction
of two definitions is represented by the conjunction of the
specialization of their corresponding nonterminals.
Proof: C Any string derived by the result would be derived by
one of the conjoined rulesets, which is a conjunction of rulesets
from operands. B If a string was derived by both operands, a
ruleset exists in both that derives the string. A conjunction of
all such ruleset pairs exists in the new definition.

L. Disjunction of two definitions

The result of disjunction derives (any and all) strings derived
by any of the operands. Disjunction of two definitions is
again simply a combination of rulesets of the same kind from
each operand, and is represented by the disjunction of the
specialization of their corresponding nonterminals.
Proof: C Any string derived by the new definition was derived
by one of the rulesets, which came from one of the operands.
B Pick an operand, and say it derived a string. The ruleset
from that operand is part of the new definition.

M. Negation of a specialized grammar

Negation of an arbitrary grammar specialization is pro-
duced by first negating its start symbol, and constructing
the negations (and other expressions) for any specialized

nonterminals that is needed from the definition of the start
symbol recursively. Given below is the grammar for evocative
expression 〈jsonN 〉 where 〈itemN 〉 is 〈string〉:null.

〈jsonN 〉 ::= 〈eltN 〉
〈eltN 〉 ::= ‘false’ | ‘null’ | ‘true’
| 〈number〉 | 〈string〉 | 〈arrayN 〉 | 〈objectN 〉

〈arrayN 〉 ::= ‘[]’ | ‘[’ 〈eltsN 〉 ‘]’
〈objectN 〉 ::= ‘{}’ | ‘{’ 〈itemsN 〉 ‘}’
〈eltsN 〉 ::= 〈eltN 〉 | 〈eltN 〉 ‘,’ 〈eltsN 〉
〈itemsN 〉 ::= 〈itemN 〉 | 〈itemN 〉 ‘,’ 〈itemsN 〉
〈itemN 〉 ::= 〈string〉 ‘:’ 〈eltN∧N1

〉
〈eltN∧N1

〉 ::= ‘false’ | ‘true’
| 〈number〉 | 〈string〉 | 〈arrayN 〉 | 〈objectN 〉

N. Conjunction of two grammar specializations

The conjunction between two grammar specializations is
produced by first conjoining their start symbol, and hence their
corresponding definitions recursively. The following is the rest
of the specialized nonterminals for the grammar specialization
representing Equation (4).

〈jsonE∧N 〉 ::= 〈eltE∧N 〉
〈eltE∧N 〉 ::= 〈arrayE∧N 〉 | 〈objectE∧N 〉
〈arrayE∧N 〉 ::= ‘[’ 〈eltsE∧N 〉 ‘]’
〈objectE∧N 〉 ::= ‘{’ 〈itemsE∧N 〉 ‘}’
〈eltsE∧N 〉 ::= 〈eltE∧N 〉 | 〈eltE∧N 〉 ‘,’ 〈eltsN 〉
| 〈eltN 〉 ‘,’ 〈eltsE∧N 〉

〈eltN∧N1
〉 ::= ‘false’ | ‘true’

| 〈number〉 | 〈string〉 | 〈objectN 〉 | 〈arrayN 〉
〈itemsE∧N 〉 ::= 〈itemE∧N 〉 | 〈itemE∧N 〉 ‘,’ 〈itemsN 〉
| 〈itemN 〉 ‘,’ 〈itemsE∧N 〉

〈itemE∧N 〉 ::= 〈stringE1〉 ‘:’ 〈eltN∧N1
〉

| 〈string〉 ‘:’ 〈eltE∧N∧N1
〉

〈eltE∧N∧N1
〉 ::= 〈arrayE∧N 〉 | 〈objectE∧N 〉

O. Disjunction of grammars

Disjunction of two grammars is built by disjunction of their
start symbol, and corresponding definitions recursively.

P. Constructing definitions corresponding to nonterminals

To convert an evocative expression to grammar, we try to
construct the start symbol of the new grammar. To do that,
we need to apply the given operation to the corresponding
definitions of the start symbols of the subject grammars.
These in turn require further specialized nonterminals to be
computed, which is done recursively until no more specialized
nonterminals need to be constructed.

At each step, the nonterminal to be constructed is simplified
into its canonical DNF form. We then reconstruct this term
from our smallest specializations (i.e the specializations that
correspond to a single pattern) that can be directly reconstructed
from the evocative patterns.

We note that one can also collect all the Boolean expressions
for the same nonterminal from operand grammars, and solve
them to reconstruct the new term in terms of available terms.
That is, the algebraic operations can be done on conforming
grammars even if the smallest terms are not known, and the
nonterminals are not labelled with pattern expressions.

VI. IMPLEMENTATION AND USAGE SCENARIOS

We have implemented Evogram as a standalone Jupyter4

notebook with detailed steps and examples5. The grammars are
accepted and produced in the Fuzzingbook [19] canonical
format, and the evocative patterns in the DDSET format.
Grammars can be converted from and to other popular formats,
such as ANTLR.

We see the following usage scenarios for Evogram:
Precise control during fuzzing. Given a particular pattern or

a set of patterns that is associated with some behavior
of the program, one can use grammar specializations to
specify that inputs generated satisfy arbitrary Boolean
constraints, inducing certain failures while preventing
others. The utility of such a grammar is that, one can
precisely ask the fuzzer to concentrate on portions of code,
or portions of input space one wants to explore further,
avoiding the behaviors that one does not want to trigger.

Testing and validating fixes. The above control over test in-
puts works particularly well if a concrete failure-inducing
input can be generalized towards an abstract failure-
inducing input, as produced by DDSET [25]. When fed
with such patterns, the Evogram produces a grammar
whose produced strings all contain instantiated patterns,
and thus variants of the original failure-inducing input
in all sorts of contexts—which makes them helpful for
validating fix correctness.

Validating inputs. Assuming that a certain vulnerability is
known to be induced by a failure inducing pattern under
specific contexts, one can encode the specific context
under which the failure is induced, and allow only the
negation of this pattern to proceed to the program, rejecting
any string that may induce the failure. This provides
the developers with a quick fix tool for identifying and
quickly rejecting potentially malicious inputs such as SQL
injections without the knowledge of the internals of the
program.

Algebra of oracles. The abstract behavior-inducing inputs
are mined from a given program and a given predicate
using DDSET. Such abstract inputs correspond to specific
program behaviors and are directly representable as
evocative patterns. Given such evocative patterns, we
can build evocative expressions that represent complex
program behaviors and can be used to validate the program
behavior for corresponding inputs.

Supercharged recognizers. Regular expressions (regexes) are
typically used to match and extract parts of input by
programmers. These inputs may often be encoded in
a structured format such as JSON, XML, HTML, and
SEXPR. However, the siren song of regular expressions is
hard to ignore6. While the situation has started to change
with projects such as Combi [27], SemGrep [28], and
Coccinelle [29] that rely on the underlying grammar,

4https://jupyter.org
5https://zenodo.org/record/4456296
6https://stackoverflow.com/q/1732348/1420407

the constructs they use are limited (disjunction and at
best conjunction), and the expressions need to be written
by hand, which limits their usability. The evocative
expressions can be 1) automatically mined from sample
expressions and 2) combined to form arbitrarily complex
matching specifications.
Further, evocative expressions can be extended to support
constraints on each term such as length < 10 or
variable a is defined. The relational algebra of such
constraints can be easily added to the underlying Boolean
algebra.

Generating data structures. Algebraic data types (except
GADTs) have a 1:1 mapping to context-free grammars,
and property checkers such as QuickCheck rely on
generation of data structures to verify properties. The
specialized grammars from evocative expressions could
precisely specify how and what properties these structures
should contain.

Configuring and customizing systems. Most hierarchical
structures can be represented as derivation trees from
context-free grammars. Such structures include URLs,
file systems, GUI navigation, object hierarchies, and
more. All these structures have some concept of access
control defining under what conditions certain elements
can be reached, or certain actions can be performed. Such
access control rules could be expressed via evocative
patterns, specializing general access rules towards specific
environments.

VII. EVALUATION

We have evaluated Evogram and grammar specializations
both in a testing context (producing inputs that contain specific
evocative patterns) and in a prevention context (checking
whether inputs contain a specific pattern). Specifically, we
pose the following research questions:
RQ1 How effective are the specialized grammars produced

by Evogram in producing expressions that contain (and
do not contain) any evocative fragments?

RQ2 How effective are the generated specialized grammars in
recognizing expressions that contain (or do not contain)
evocative fragments?

A. Evaluation Setup

For evaluation, we use the subjects from DDSET [25]. The
first are programming language interpreters: clojure, closure,
rhino and lua. Input languages for these subjects are more
constrained than simple context-free languages, with the ability
to declare and use variables and functions. When using a
grammar-based fuzzer, the probability of randomly generating
a semantically valid string is extremely low. Hence, for such
language interpreters, we rely on evaluating the specialized
grammars only as recognizers. For the UNIX utilities find and
grep, only syntactic validity is required. Hence, we evaluate
these utilities as both producers and recognizers.
• For the evaluation as producers, we generate inputs using

two strategies: The first strategy is to insert evocative

TABLE I: Percentage of inputs generated with evocative
strategy that induces failure (F) and non-evocative strategy
that did not induce failure (¬F).

Bug F ¬F
find 07b941b1 100% of 100 96% of 100
find 93623752 100% of 100 97% of 100
find c8491c11 100% of 100 93% of 100
find dbcb10e9 100% of 100 89% of 100
grep 3c3bdace 100% of 100 100% of 96
grep 54d55bba 100% of 100 100% of 92
grep 9c45c193 100% of 1 100% of 94
Total 100% of 701 99% of 682

fragments into the grammar. The resulting grammar (we
call this the evocative grammar, and the strategy the
evocative strategy) is then used for input generation. The
second strategy negates the previous grammar, and the
resulting grammar (we call this the non-evocative grammar
and the strategy the non evocative strategy) is used to
produce inputs. The inputs thus generated are fed to the
program, and the program is monitored for the expected
behavior and its absence.

• For the evaluation as recognizers, we require a source
of inputs that induces the failure, as well as a source of
inputs that is guaranteed not induce the failure. Since
we are using the subjects from DDSET, we use inputs
generated during the pattern mining for this purpose.
That is, we collect the semantically valid strings generated
during minimization and abstraction, which were found
to have induced a failure or otherwise. We then evaluate
whether the specialized grammars produced by Evogram
using the evocative strategy are capable of recognizing
evocative inputs, and rejecting the non-evocative inputs.
Similarly, we evaluate whether the specialized grammars
produced by Evogram using non-evocative strategy are
capable of rejecting any failure inducing input.

B. Evaluation Results and Discussion

Our evaluation results are as follows: The result of gener-
ating evocative inputs using the evocative and non-evocative
strategies, tested against the program for reproducing the failure
is given in Table I. The F column contains the percentage
of inputs using evocative strategy that induced the failure
when tested against the program. The ¬F column contains the
percentage of inputs using non-evocative strategy that did not
induce the failure when tested against the program.

From Table I, we find that specialized grammars generated
by Evogram can produce inputs that contain the given evocative
fragment, and reproduce the expected failure with high accuracy
(100%) when used as a test generator for UNIX utilities. Further,
when used to produce inputs that do not contain the evocative
fragment, Evogram succeeds in avoiding such failure inducing
fragments in its inputs with an accuracy of 99.0%. The bug
grep 9c445c193 could not be abstracted. Hence, only a single
input was produced during fuzzing, and only three (substrings)
recognized.

TABLE II: Recognizing failure inducing inputs with F and
non-failure inducing inputs with ¬F .

Bug F ¬F
find 07b941b1 89.7% of 213 100% of 7
find 93623752 99.5% of 193 100% of 7
find c8491c11 98.5% of 196 100% of 8
find dbcb10e9 100% of 374 100% of 6
grep 3c3bdace 94.6% of 203 100% of 28
grep 54d55bba 83.1% of 213 100% of 24
grep 9c45c193 33.3% of 3 100% of 11
clojure 2092 80.2% of 360 99.0% of 100
clojure 2345 99.2% of 393 96.1% of 52
clojure 2450 92.7% of 704 99.6% of 267
clojure 2473 93.7% of 695 98.3% of 58
clojure 2518 44.4% of 9 98.7% of 76
clojure 2521 24.3% of 847 99.0% of 111
closure 1978 94.8% of 1672 98.0% of 101
closure 2808 100% of 64 88.8% of 27
closure 2842 1.5% of 261 98.9% of 176
closure 2937 36.6% of 1293 91.4% of 35
closure 3178 95.1% of 719 98.0% of 99
closure 3379 57.6% of 646 80.7% of 26
lua 5.3.5 4 3.1% of 161 98.6% of 142
rhino 385 65.7% of 472 93.3% of 30
rhino 386 97.8% of 363 93.2% of 44
Total 73.2% of 10054 97.8% of 1435

Evogram grammars induce expected failures with 100%
accuracy and prevent such failures with 99.0% accuracy.

The result of recognizing evocative inputs using the evocative
strategy is given in F column of Table II. The result of
recognizing non-evocative inputs using the non-evocative
strategy is given the ¬F column.

Looking at Evogram’s performance as a recognizer, from
Table II we find that grammars from Evogram are able to
recognize the failure inducing inputs for most bugs. For a
number of bugs, however (lua 5.3.5 4, clojure 2521, closure
2937, clojure 2518, grep 9c45c193), less than half of the
failure-inducing inputs were predicted as such. This is due
to the DDSET pattern specializing to the first failure-inducing
bug, which then leads to an overspecialization in the resulting
grammar. However, even with this caveat, the grammars
produced by Evogram are able to recognize failure inducing
inputs with 73.2% accuracy and non-failure inducing inputs
with 97.8% accuracy.

Evogram grammars recognize failure inducing inputs with
73.2% and non-failure inducing inputs with 97.8% accuracy.

Evocative expressions represent specialized context-free
grammars that guarantee production of the requisite pattern
somewhere in the input string produced. However, having the
particular pattern somewhere in the string is no guarantee that
a given failure is induced. For example, the null check may
be ignored under specific circumstances. Hence, it is important
to validate how effective the grammars are, in converting the
input patterns to actual failures. Our results from Table I using
real world bugs show that the evocative expressions work well
in generating inputs that contain the failure pattern, as well

as in inducing the requisite failure. Similarly, the same table
shows that we can generate inputs that will not contain the
problematic patterns, thus freeing the fuzzer to explore rarer
bugs. As our results from Table II show, evocative expressions
shine in the role of recognizers of specific patterns in input,
and can work in the role of a validator for inputs.

C. Threats to Validity

Our empirical evaluation is subject to the following threats
to validity:
External Validity. The external validity (generalizability) of

our results depends on the representativeness of our data
set. Our subjects were a small set of language interpreters
and two UNIX utilities. Further, only a few bugs were
evaluated, and their patterns chosen for experiments.
Hence, it is possible that our subjects are not representative
of the real world. The main mitigation here is that these
were actual bugs found in the wild, logged by real people.
Further, the grammars are from popular and complex real
world input and programming languages.

Internal Validity. The threat to internal validity (correctness
of evaluation) of our results is mitigated by careful
verification (including formal proofs) of our algorithms.

Construct Validity. To mitigate the threat to construct validity
(the degree to which a test measures what it claims to be
measure of), we measure how accurate our specialized
grammars are as recognizers and generators, which are
the main ways we expect practitioners to use our tool.

VIII. RELATED WORK

A. Grammar-Based Testing

Already in 1970, Hanford suggested the use of gram-
mars to systematically produce valid inputs [7]. Today’s
approaches [19] combine specification-based producers with
symbolic constraint solving [8], reusing fragments from bug
reports [11], search-based strategies [9], [10], grammar cover-
age [12], [13], annotations [14], search heuristics [15], power
schedules [16], and local input generators [17]; search-based
grammar testing is now also applied for security testing [18].
All these tools and approaches can immediately benefit from
specialized grammars as produced by Evogram, targeting
specific input subsets or the locations that process them.

B. Patterns and Pattern Languages

In Software Engineering, patterns have been frequently used
to obtain specific search and configuration results. Besides the
ubiquitous regular expressions and wildcards, a number of
approaches allow to express structural properties.

Combi [27] shows how patterns based on a base context
free grammar can be used for identifying and transforming
structures in code. Semgrep [28] by r2c is another tool that
allows programmers to specify patterns similar to evocative
patterns. Note, though, that both are for recognition, which is a
simpler problem than generation, as one can run the matching
rules as as sequence of filters. We note that while the patterns
used by Combi are similar to the evocative patterns, they

are meant to be specified by hand only. Combi and Semgrep
allow conjunction and disjunction of patterns, but algebras and
negations are not supported.

Micro-grammars [30] is another general approach for partial
parsing and semantic analysis.

Another related work is Coccinelle [29] that defines a
pattern language for transformations of C programs such as
the Linux kernel. While Coccinelle supports disjunction of
patterns, conjunction and negation are not supported.

Conjunctive and Boolean grammars [31] are a generalization
over context-free grammars, and specify grammars based on
conjunction, (implicit) disjunction and negation of arbitrary
context-free grammars. While one can reuse context-free
grammar parsers (by applying one grammar after another), it is
not clear whether efficient producers exist for such languages.

C. Generalizers

Generalizers are tools that turn a concrete input into a
more general pattern with similar effect. DDSET [25] generates
failure patterns from any given failure inducing input and
the corresponding predicate. SmartCheck from Lee Pike [32]
generalizes algebraic data structures. Extrapolate by Braquehais
et al. [33], generalizes counter examples of functional test
properties. Groce et al. [34] show one can identify canonical
minimal tests with annotations for generalizations. In our
context, the generalized patterns all serve as starting point
for evocative patterns. None of these tools, would produce
Boolean combinations of patterns.

IX. CONCLUSION AND FUTURE WORK

With Evogram, we have introduced the concept of a
grammar transformer, specializing a grammar towards Boolean
combinations of pattern occurrences. Such transformations
give testers unprecedented control over the test inputs to be
produced. The transformations are proven to be correct; an
evaluation shows the usefulness of transformed grammars for
producing and checking patterns.

Our future work will focus on the following:
Applications. The lion’s share of our future work will focus

on further usage scenarios hinted at in Section VI,
from parsing over pattern matching to configuration and
adaptation.

Richer specifications. We have described how to insert at
least one failure-inducing fragment into the input (or not).
What if one wants a particular number of fragments
(say, exactly one)? What if one wants sequences of
fragments (one pattern should always follow another
one)? Such constraints can still be represented in a
context-free grammar, and we will be investigating specific
transformations for them.

Constrained grammars. Some input properties cannot be
easily expressed in a context-free grammar; numerical
properties is a typical example. We want to attach (Turing-
complete) constraints to individual patterns and then use
transformation rules together with constraint solving to

produce inputs that satisfy structural as well as other
constraints.

Ambiguous grammars. Our algebra is restricted to non-
ambiguous context-free base grammars. However, it may
be extended to all context-free grammars by taking into
account the fact that there could be multiple parse trees
for an evocative pattern.

We provide a well explained Jupyter notbook7 that details our
technique as well as a partial mechanization of proofs (using
HOL4) for verification8. The complete replication package is
available as a virtual machine at

DOI:10.5281/zenodo.4456296

REFERENCES

[1] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998. [Online]. Available:
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.445

[2] M. Höschele and A. Zeller, “Mining input grammars from dynamic
taints,” in IEEE/ACM Automated Software Engineering, ser. ASE 2016.
New York, NY, USA: ACM, 2016, pp. 720–725. [Online]. Available:
http://doi.acm.org/10.1145/2970276.2970321

[3] R. Gopinath, B. Mathis, and A. Zeller, “Mining input grammars from
dynamic control flow,” in Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2020. [Online]. Available:
https://publications.cispa.saarland/3101/

[4] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide,
and J. Regehr, “Taming compiler fuzzers,” in Proceedings of
the 34th ACM SIGPLAN conference on Programming language
design and implementation, 2013, pp. 197–208. [Online]. Available:
https://doi.org/10.1145/2491956.2462173

[5] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm testing.”
New York, NY, USA: Association for Computing Machinery, 2012.
[Online]. Available: https://doi.org/10.1145/2338965.2336763

[6] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon,
“Semantic fuzzing with Zest,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
329–340. [Online]. Available: https://doi.org/10.1145/3339069

[7] K. V. Hanford, “Automatic generation of test cases,” IBM Systems
Journal, vol. 9, no. 4, pp. 242–257, Dec. 1970. [Online]. Available:
https://doi.org/10.1147/sj.94.0242

[8] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2008, pp. 206–215. [Online]. Available:
https://doi.org/10.1145/1375581.1375607

[9] F. M. Kifetew, R. Tiella, and P. Tonella, “Combining stochastic
grammars and genetic programming for coverage testing at the
system level,” in International Symposium on Search Based Software
Engineering, 2014, pp. 138–152. [Online]. Available: https://doi.org/10.
1007/978-3-319-09940-8 10

[10] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test case generation,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 742–762, 2010. [Online]. Available:
https://doi.org/10.1109/TSE.2009.52

[11] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments.”
in USENIX Conference on Security Symposium, 2012, pp. 445–458.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/holler

[12] R. Lämmel, “Grammar testing,” in Fundamental Approaches to Software
Engineering (FASE), H. Hussmann, Ed., 2001, pp. 201–216. [Online].
Available: https://doi.org/10.1007/3-540-45314-8 15

[13] N. Havrikov and A. Zeller, “Systematically covering input structure,”
2019, pp. 189–199. [Online]. Available: https://doi.org/10.1109/ASE.
2019.00027

7https://nbviewer.jupyter.org/github/vrthra/Ewoks/blob/master/src/FAlgebra.ipynb
8https://github.com/vrthra/Ewoks/tree/master/mechanization

[14] F. M. Kifetew, R. Tiella, and P. Tonella, “Generating valid grammar-based
test inputs by means of genetic programming and annotated grammars,”
Empirical Software Engineering, vol. 22, no. 2, pp. 928–961, 2017.
[Online]. Available: https://doi.org/10.1007/s10664-015-9422-4

[15] R. Hodován, Á. Kiss, and T. Gyimóthy, “Grammarinator: a
grammar-based open source fuzzer,” in Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, 2018, pp. 45–48. [Online]. Available:
https://doi.org/10.1145/3278186.3278193

[16] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, to appear; preprint at https://arxiv.org/abs/1811.09447.

[17] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon,
“Semantic fuzzing with Zest,” 2019, pp. 329–340. [Online]. Available:
https://doi.org/10.1145/3293882.3330576

[18] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “NAUTILUS: Fishing for deep bugs with grammars.”
in NDSS, 2019. [Online]. Available: https://www.ndss-symposium.org/
ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/

[19] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler,
“The fuzzing book,” in The Fuzzing Book. Saarland University,
2019, retrieved 2019-09-09 16:42:54+02:00. [Online]. Available:
https://www.fuzzingbook.org/

[20] R. Gopinath and A. Zeller, “Building fast fuzzers,” 2019.
[21] J. Earley, “An efficient context-free parsing algorithm,” Communications

of the ACM, vol. 26, no. 1, pp. 57–61, 1983.
[22] M. Tomita, Efficient parsing for natural language: a fast algorithm for

practical systems. Springer Science & Business Media, 2013, vol. 8.
[23] D. Grune and C. J. Jacobs, “Parsing techniques,” Monographs in

Computer Science. Springer,, p. 13, 2007.
[24] E. Scott and A. Johnstone, “Gll parsing,” Electronic Notes in Theoretical

Computer Science, vol. 253, no. 7, pp. 177–189, 2010.
[25] R. Gopinath, A. Kampmann, N. Havrikov, E. Soremekun, and A. Zeller,

“Abstracting failure-inducing inputs,” in Proceedings of the 2020 Interna-
tional Symposium on Software Testing and Analysis. ACM, 2020.

[26] “HOL4,” https://hol-theorem-prover.org/. [Online]. Available: https:
//hol-theorem-prover.org/

[27] R. van Tonder and C. Le Goues, “Lightweight multi-language syntax
transformation with parser parser combinators,” in Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2019, pp. 363–378. [Online]. Available:
https://doi.org/10.1145/3314221.3314589

[28] r2c, “Lightweight static analysis for many languages. find and block
bug variants with rules that look like source code.” https://semgrep.dev/,
2020, accessed: 2020-08-19.

[29] Y. Padioleau, J. L. Lawall, and G. Muller, “Understanding collateral
evolution in Linux device drivers,” in Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006, 2006,
pp. 59–71. [Online]. Available: https://doi.org/10.1145/1217935.1217942

[30] F. Brown, A. Nötzli, and D. Engler, “How to build static checking systems
using orders of magnitude less code,” in Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2016, pp. 143–157.

[31] A. Okhotin, “Conjunctive and Boolean grammars: The true general case
of the context-free grammars,” Computer Science Review, vol. 9, pp. 27
– 59, 2013. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S157401371300018X

[32] L. Pike, “SmartCheck: automatic and efficient counterexample
reduction and generalization,” in Proceedings of the 2014 ACM
SIGPLAN symposium on Haskell, 2014, pp. 53–64. [Online]. Available:
https://doi.org/10.1145/2633357.2633365

[33] R. Braquehais and C. Runciman, “Extrapolate: generalizing
counterexamples of functional test properties,” in Proceedings
of the 29th Symposium on the Implementation and Application of
Functional Programming Languages, 2017, pp. 1–11. [Online]. Available:
https://doi.org/10.1145/3205368.3205371

[34] A. Groce, J. Holmes, and K. Kellar, “One test to rule them all,”
in Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis. ACM, 2017, pp. 1–11. [Online].
Available: https://doi.org/10.1145/3092703.3092704

