
An Empirical Study of Design Degradation: How
Software Projects Get Worse Over Time

Iftekhar Ahmed, Umme Ayda Mannan, Rahul Gopinath, Carlos Jensen
School of EECS

Oregon State University
Corvallis, OR, USA

{ahmed, mannanu, gopinath, cjensen} @eecs.oregonstate.edu

Abstract— Context: Software decay is a key concern for
large, long-lived software projects. Systems degrade over time as
design and implementation compromises and exceptions pile up.

Goal: Quantify design decay and understand how software
projects deal with this issue.

Method: We conducted an empirical study on the presence
and evolution of code smells, used as an indicator of design
degradation in 220 open source projects.

Results: The best approach to maintain the quality of a
project is to spend time reducing both software defects (bugs)
and design issues (refactoring). We found that design issues are
frequently ignored in favor of fixing defects. We also found that
design issues have a higher chance of being fixed in the early
stages of a project, and that efforts to correct these stall as
projects mature and the code base grows, leading to a build-up of
problems.

Conclusions: From studying a large set of open source
projects, our research suggests that while core contributors tend
to fix design issues more often than non-core contributors, there
is no difference once the relative quantity of commits is
accounted for. We also show that design issues tend to build up
over time.

Keywords— Software Decay, Design Problems, Project History.

I. INTRODUCTION

Software systems require constant modifications in the
form of bug fixes and the addition of new features to satisfy
end user needs. Failure to do so might lead to losing users or
unsatisfied users [24, 4]. The pressure to keep growing and
evolving the software often makes it impossible to refactor and
redesign when a requirement changes. This eventually leads to
decay in the software design and the growth of technical debt.
One outcome of such decay is that code becomes more difficult
to extend or understand [47], and as a result the ability to
evolve an application tends to decrease over time [33].

Design degradation leads to design debt, which contributes
to technical debt [6] and negatively impacts the overall quality
of the software. One of the symptoms of design degradation is
that code structure drifts away from good object-oriented
design principles (e.g. becomes too entangled and difficult to
modularize). These bad design decisions leading to technical
debt are also known as code smells [13]. This term was coined
by Fowler and Beck [13], who gave an informal definition of

22 code smells focused on the maintainability of software
systems, and a set of indicators. Each code smell examines a
specific kind of system element (e.g. classes or methods),
which can be evaluated by its internal and external
characteristics. Researchers have used code smells as a
measurement of design degradation [7, 25, 39].

In this paper we present the results of an empirical study on
the presence and evolution of code smells, used as an indicator
of design degradation. To the best of our knowledge, in
contrast to previous studies [5, 22, 25, 38, 39, 42] ours is the
largest study so far in terms of both the size of programs
involved (534 to 100,000 lines), and the number of projects
analyzed (220 open-source projects). This allows for stronger
and more widely applicable conclusions about the evolution of
design degradation and code smells.

The goal of this study is to shed light on how design
degradation happens as a project ages, and how traditional
quality assurance (QA) activities contribute or fail to contribute
towards improving design quality. More specifically we try to
answer the following research questions:

1. How code smells evolve over time?

2. Is refactoring aimed at addressing technical debt
dominated by specific sub-groups of developers?

3. Does the testedness of a project and the quality of tests
show a correlation with design quality?

4. Is there a match between the smells discussed in literature
and in tools and the smells projects most commonly
struggle with?

The reminder of the paper is organized as follows: We start
with a review of research on design degradation and the
techniques researchers have used to identify design
degradation. Then we discuss how design degradation manifest
in the form of code smells and the research related to code
smells. Next we describe our methodology, filtering criteria
and the demography of FOSS projects we studied. We also
explain the tool selection and evaluation criteria. Section 4
describes the results of our study. Section 5 discusses our
findings, their implications and how they answer our research
questions. Section 6 concludes with a summary of the key
findings and future work.

II. RELATED WORK

The informal definition of design degradation provided by
Martin states that as software evolves it starts to rot, like “a

piece of bad meat,” if dependencies among modules are not
adequately managed [33]. This results in a code base that is
difficult to maintain, reuse and add new features to.

Researchers have come up with various techniques for
identifying design degradation using static analysis techniques,
where the degradation is assessed by analyzing single, static
versions of software systems [7, 8, 25]. However, software
repository mining provides a way to extract the historical
evolution of a software system [20]. Researchers have also
come up with techniques that rely on evaluation of successive
versions of a software system [11, 21, 23] to identify design
degradation as a process.

Researchers have looked at the effect of software evolution
on design quality. Izurieta et al. found that as systems mature,
artifacts that do not have any role in the design pattern tend to
build up around the pattern and accumulate, like “grime”,
which eventually leads to design pattern decay [17]. Another
facet of design degradation is design debt, which contributes to
technical debt [6]. Design debt builds up as exceptions are
made to speed up development, or we deal with edge cases in
the development of a product. However, as this debt builds up,
it may reach a level where interest payments in the form of
difficulties in understanding and maintaining the code and as it
deviates from design and documentation outweighs any short-
term benefits. Refactoring can be used to address this debt,
revisiting exceptions and hacks made, and changing the
underlying problem to create a more sustainable, and efficient
design. Code smells have been used to measure design debt.
For instance Zazworka et al. [47] found that the God class
smell is related to technical debt.

The concept of code smells was introduced by Fowler [13].
Code smells are symptoms of problems in source code, and
indicators of where refactoring is needed [13]. Although design
degradation and code smells are very similar, the distinction
between the two is that code smells are defined at a higher
level of abstraction and have a negative impact on a larger part
of the software value than a localized piece of code. Code
smells has been associated with bugs [25, 38] and code
maintainability problems [13].

The identification of code smells is typically done during
development, testing, and maintenance. Many approaches have
been proposed for code smell detection, such as metric based
[23] and meta-model based [35]. Metric based measures show
that code smells impact software quality [30]. Most of the code
smell detection tools are based on metric analysis [23, 29].
This static analysis based approach has its drawbacks. Fowler
and Beck claimed that “No set of metrics rivals informed
human intuition” [13] when it comes to deciding whether an
instance of a code smell should be refactored. Researchers
have also categorized code smells based on their impact level
or inter component relationship. Examples of such smells
include the “Object oriented Abusers”, “Couplers”, and
“Bloaters” [28, 32].

Several studies have looked into the relationship between
code smells and change-proneness. Olbrich et al. [38] report
that classes infected with the “God class” and “Shotgun
surgery” smells are more change prone. Contrary to their
finding, Schumacher et al. [42] found that the “God class” is
only more change prone if results are not normalized by LOC.

However, Khomh et al. [22] found that classes infected with
code smells are changed more often overall.

Identifying the impact of the code smells [38] and how
these impact the understandability and maintainability of code
[2, 10] has also been of interest to researchers. Smith et al.
found that “God class” and “Switch statements” smells have an
impact on software performance [44]. Prioritization of code
smells has been identified as an important issue, as large
numbers of warnings are often generated for a code-base.
Fontana et al. [12] surveyed 6 code smell detection tools and
found that none of these prioritized results. Many different
ways of visualizing code smells have also been proposed [36].
Murphy et al. [36] identified some guidelines that could be
useful to help developers prioritize code for refactoring.

Understanding design degradation is important.
Researchers have looked at how the testability of a system is
impacted as design patterns decay over time. Izurieta et al.
found that design pattern decay leads to reduced modularity,
eventually increases the required number of test cases needed
to meet test requirements [18]. They also found that design
pattern decay leads to testing anti-patterns such as “concurrent-
user-relationship” and “self-use-relationship”.

III. METHODOLOGY

A. Project Selection Criteria

We wanted to make sure that our findings would be
representative of the code developed in real world. We decided
to use Java as the language of focus. This decision was
influenced by 2 factors: First, Java is one of the most popular
languages (according to the number of projects hosted on
Github and the Tiobe index1). The second was the availability
of code smell detection tools for Java compared to other
programming languages.

We searched for projects in Github written in Java. We
randomly selected 500 projects from this list. For ease of build
and analysis, we only selected projects using the Maven [1]
build system.

 We checked for the distribution of commits across the
history of the projects and found that the majority (95%) of
projects had an active history of less than 200 weeks. Figure 1
has the frequency distribution of commits over time for all
projects. Because of the long tail property, we cut off analysis
at 200 weeks in order to not skew our findings due to the
skewing.

 Our aim is to see how code smells evolve over time. To do
so we could have used different ways of partitioning time.
Some researchers [e.g. 17, 18] have chosen to use releases as
the unit of time, others individual commits, or discrete time
units (years, months, weeks, days). Though all of these
approaches should lead to similar findings, the “resolution”
may be different. Furthermore, none of these approaches lead
to a true apples-to-apples comparison across projects. Projects
work at different phases, projects are of different size, maturity
level, and follow different release cycles and policies.
Individual commits are the only “level” measure, but would be
too fine grained for our purpose. We therefore selected the

1 http://tiobe.com/index.php/content/paperinfo/tpci/index.html

week as our unit of measure because, while subject to some
variation from project to project, did give us fine-grained
enough insight into the evolution of projects.

Fig. 1. Distribution of commits over time (vertical line indicating cutoff at
200 weeks)

 We removed projects that were too small, had very few
files (< 10 files), or few lines of code (< 534 lines of code).
This filtering was essential because we wanted make sure that
the projects we are analyzing are not too small or too simple
for real world projects. We also removed projects that had
short lifespan (< 10 weeks) because such projects can skew the
results. Our final data set contained 220 projects. Table I
provides a summary of features and other descriptive
information about the projects that were part of our study.

TABLE I. PROJECT STATISTICS

Dimension Max Min Average Stddev
Line count 116,238 534 5,837.00 14,511.73
Developers 105 4 10.78 11.04
Total Code smells 260 1 15.57 30.27
Duration (Weeks) 200 10 41.37 43.18

 We also manually categorized the domain of the projects
by looking at the project description and using the categories
used by Souza et al. [9]. Table II has the summary of the
domains of the projects. In the next subsection, we discuss the
code smell detection tools used.

B. Tool selection

We chose to use InFusion [16] to identify code smells
because it has been found to identify the broadest set of smells
[12]. Researchers have found that the metric-based approach
identified by Marinescu [31] has the highest recall and
precision (precision: 71%, recall: 100%) for finding most code
smells [42]. InFusion uses this same principle and set of
thresholds for identifying code smell, which was another
reason for using InFusion.

Our analysis depends on the smells identified by Infusion
and we needed to have some level of confidence about the
performance of the tool. There was no such evaluation
available for InFusion, so we evaluated the smell detection

performance of InFusion. We used the oracle constructed by
Palomba et al [11]. Palomba et al. mentions that their oracle
does not ensure completeness but it provides a degree of
confidence about the correctness of the identified smell
instances. In the oracle Divergent Change and Parallel
Inheritance code smells are "intrinsically historical" and is not
identified by InFusion. So we evaluated InFusion's
performances by calculating precision (1) and recall (2) for
identifying Blob and Feature Envy code smells from the oracle.
We also report the F-measure (3), defined as the harmonic
mean of precision and recall as an aggregate indicator of
precision and recall [3]. Table IV has the summary of the
performance of InFusion.

TABLE II. DISTRIBUTION OF PROJECTS BY DOMAIN

Domain Percentage
Development 61.98%
System Administration 19.80%
Communications 6.25%
Business & Enterprise 3.12%
Home & Education 3.12%
Security & Utilities 2.61%
Games 2.08%
Audio & Video 1.04%

TABLE III. LIST OF SMELLS IDENTIFIED BY INFUSION

Smells
Cyclic Dependencies
Brain Method
Data Class
Feature Envy
God Class
Intensive Coupling
Missing Template Method
Refused Parent Bequest
Sibling Duplication
Shotgun Surgery
SAPBreakers
Internal Duplication
External Duplication
Blob Class
Blob Operation
Data Clumps
Message Chains
Distorted Hierarchy
Schizophrenic Class
Tradition Breaker
Unstable Dependencies

%
smellspositiveTrue

InFusionbydetectedsmellscodesmellspositiveTrue
Recall


 (1)

%
dsCode

InFusionbydetectedsmellscodesmellspositiveTrue
Precision

InFusionbyetetctedmells


 (2)

RecallPrecision

RecallPrecision
m-F




easure (3)

TABLE IV. INFUSION PERFORMANCE

Precision Recall F-measure
84% 100% 91.30%

C. Data collection

We selected data from the Git repositories of the 220
projects, from the project start date until April 25th, 2013. We
collected a total of 33,070 commits across the 220 projects.
From the initial code commit, we calculated the code smells
added or removed by each subsequent code commit to a
project. For each commit we also calculated the number of
modified lines.

We categorized the code smells into broad categories, as
suggested by the code smell literature [28]. These categories
were: Bloater, Object oriented abusers, Coupler, Dispensable,
Encapsulators and Others. Bloaters are code smells that lead
the code to balloon so it cannot be effectively managed. The
smells include data clumps, large class, long method, long
parameter list and primitive obsession. Object oriented abusers
are smells that do not fully exploit the advantages of object-
oriented design. Some of the smells include Switch statements,
parallel inheritance hierarchies, and alternative classes with
different interfaces. The Coupler category contains the code
smells that identify high coupling between objects, in defiance
of good object oriented design principles. Smells in this
category include feature envy and inappropriate intimacy. The
Dispensable category contains smells such as the lazy class,
data class and duplicate codes. The Encapsulators category
contains code smells that deal with the data communication
mechanism or encapsulation. This includes message chain and
middleman smells. Others is an aptly named catch-all category.

We collected the total number of test cases present for each
project after each code commit, an indicator of the testedness
of the code. We also calculated the code coverage of the test
suites. Coverage metrics such as statement coverage, branch
coverage, path coverage etc are the indicators of quality of the
test case [46]. We gathered different coverage metrics, such as
statement coverage from Emma [45], branch coverage from
Cobertura [26], path coverage from JMockit [40], and mutation
kills from PIT [15]. Then we checked whether there is any
difference between the low (less than 30%) and high (more
than 60%) tested (measured using these coverage criteria)
projects and total number of code smells present in the project.

IV. RESULTS

In the following section, the collected and observed results
for the research questions stated above are presented.

A. How code smells evolve over time

 To answer our first research question we collected the total
number of code smells after each commit. We normalized the
smell count using feature scaling (4), which gives us a score
between 0 and 1.

min(x)max(x)

min(x)x
valueRescaled




 (4)

 Previous studies have shown that normalizing the smell
count using the project size reduces the bias of larger projects

on the overall smell count [42]. For our study this was not
necessary. Our aim was to identify general trends across
projects, not to look at differences between them. There was
therefore no need to normalize based on project size.

We looked at the code smells change trend for each project.
For this purpose we calculated the effect size of week on
normalized smell count using a linear regression model, giving
us how much smell count changed for each project per week.
Then based on the effect size we categorized each project into
one of three categories: increasing, decreasing or unchanged. If
the effect was positive and larger than 0.005, we marked those
projects as increasing. We selected 0.005 as our threshold
because this indicates a change of less than or equal to a 0.5%
of the number of smells, or at most 1 smell added or removed
per week. For negative effect we applied the same threshold
and marked the project as decreasing. Any other project was
marked as unchanged. In Table V we report the percent of each
of these category. We also checked whether the effect size of
mean smell count change of increasing and decreasing groups
are different. (Welch two-sample t-test, t = -2.1623, df =
34.689, p-value = 0.02411), meaning that there is strong
evidence that these two groups differ in their mean effect size.

TABLE V. PERCENTAGE OF DIFFERENT CODE SMELL CHANGE
PATTERN

Category Percentage
Increasing 55.00%
Decreasing 7.85%
Unchanged 37.15%

To have an understanding of the bigger picture we looked
at the average number of smells across all projects, and found
that it grows monotonically throughout 200 weeks. Figure 2
shows the average project smelliness compared to the smelliest
project in the sample.

We also wanted to check whether this same trend holds true
for all smell categories. We found that all smells in the Bloaters
category (consisting of Blob Class which indicates classes that
are very large and complex, Blob Operation which is a very
large and complex operation and Data Clumps representing
groups of data that appear together over and over again, as
parameters that are passed to operations throughout the system)
increase over time.

We found that code smells in the Dispensables category
had a mixed tendency; Data Classes code smell – which are
data holders without complex functionality, but usually heavily
relied upon by other classes in the system – increase over time.
Internal and External Duplication – which identifies
duplication between portions of the same class or module, and
duplication between unrelated capsules of the system
respectively, tend to increase slowly or even dip over time.

We found that code smells in the OO abusers category
follow a mixed pattern also. These include SABreakers, which
looks for a mismatch between the subsystem's stability and its
level of abstractness and the God class, indicating high
complexity classes with a low inner-class cohesion and
extensive access to the data of foreign classes. These two
classes showed a generally growing pattern.

Fig. 2. Week-wise average project smellines compared to the smelliest
project

Fig. 3. Week-wise average project smellines compared to the smelliest
project of bloater category

Fig. 4. Week-wise average project smellines compared to the smelliest
project of Dispensables category

The other OO abuser smells – the Schizophrenic class, a
code smell that captures the scenario where a class has two or
more key abstractions, the Refused Parent Bequest code smell
– a sign of inheritance relation problems between parent and
subclass, and the Distorted Hierarchy – indicative of the
inheritance hierarchy being too deep, just like the Internal and
External Duplication in Dispensables category, Sibling
Duplication – indicative of duplication between siblings in an
inheritance hierarchy, display a different growth pattern, with
most of them plateauing relatively quickly. The Encapsulator
category had too little data to give any meaningful insights.

Fig. 5. Week-wise average project smellines compared to the smelliest
project of OO abusers category

We also found that in the Other category all smells (Cyclic
Dependencies, Feature Envy, Shotgun Surgery, Tradition
Breaker and Unstable Dependencies) have a tendency to
increase over time, and Intensive Coupling shows an
oscillating behavior.

Fig. 6. Week-wise average project smellines compared to the smelliest
project of Other category

Fig. 7. Breakdown of commits introducing(trend line on top) and
removing(trend line on bottom) smells

To gain a better understanding of how design issues evolve
over time we classified all code commits into one of three
categories; those that introduced at least one smell, those that
removed at least one smell, and those that did not impact
smells. We then calculated the percentage of commits that fell
into each of these three categories over the life of the projects.
Figure 7 shows that, as projects progress, the rate of smell
introducing commits increases (the trend line on top). Smell
reducing commits do increase over time, but not nearly as fast
as the smell introducing commits (the trend line at the
bottom). The grouping of dots around the 50 percent and 100
percent markers are formed from the many projects that in any
given week only see a small number of commits. The shaded
band is the 95% confidence interval, indicating that there is
95% confidence that the true regression line lies within the
shaded region.

B. Who takes care of smelly code?

Fig. 8. Origin of commits introducing or reducing code smells

We found that less than 5% of commits removed smells,
and that only 10% of the developers were responsible for
those commits. Because we know that a typically small core
development team is responsible for more than 80% of
contributions in any open source project [34] we next needed
to see if this group was also responsible for either the insertion

or removal of code smells. For the purposes of our paper we
defined the core contributors for each project as the top
contributors who made 80% of the contributions in the project.

As expected, core contributors, being responsible for the
bulk of contributions, both introduce more smells and remove
more smells than non-core contributors. We do however see
that core contributors appear to remove more smells than they
introduce, whereas the inverse is true for non-core contributors.
However, we found that there is no statistically significant
difference in terms of smell reducing commits and introducing
commits for the core developers (Welch two-sample t-test, t =
1.0733, df = 289, p-value = 0.284, Not Statistically
Significant). The same was true for non-core contributors
(Welch two-sample t-test, t = -0.9976, df = 180.74, p-value =
0.3198, Not Statistically Significant).

C. Does better testing lead to less smelly code?

For each week in a project’s lifespan we calculated the
number of test cases available, and the number of code smells
in the code to check if there exists a correlation between them.
We found that there is no statistically significant correlation
between these two factors (Pearson Correlation Coefficient
0.4051681). Figure 9 shows the trend line found after plotting
the normalized total count of test case and code smell count for
each week, for all projects.

Fig. 9. Comparison of Week-wise normalized total smell and test case count

As test cases are not created equal, we also wanted to
check whether there is a correlation between test coverage and
smelliness of the project. We selected the last commit for each
project and used the existing test suite for coverage analysis.
Then for each code smell we checked whether there is any
difference between the low (less than 30%) and high (more
than 60%) coverage (measured using statement, branch, path
and mutation coverage criteria) projects and number of code
smells present in the project. We found that for External
duplication (t = 2.166, df = 72, p-value = 0.03363, Statistically
Significant) and Internal duplication (t = 2.4813, df = 72, p-
value = 0.01543, Statistically Significant), low and high
coverage groups have statistically significant difference in
number of code smells present in the project.

D. Literature v. real-life

To answer our fourth research question we calculated the
number of smells being introduced and removed by category.
Our goal here was to determine if there was a good match
between the practices and problems real programmers deal
with, and the concerns of researchers. Figure 10 shows that,
SAP Breakers, Data Class and Cyclic dependencies and
Feature Envy were the most common smells, constituting
almost 50% of the code smells being introduced and removed.

Fig. 10. Breakdown of smells introduced and removed

Next we looked to the research literature to identify which
code smells receive most attention from researchers. We used
the work of Zhang et al. [48] and Sjoberg et al. [43]. Zhang et
al. performed a systematic literature review on code smells
published in IEEE and six leading software engineering
journals from January 2000 to June 2009 [48]. They identified
39 papers out of 319 papers that could answer the research
question about which code smells receive most research.
Sjoberg et al. expanded the analysis period from June 2009 to
October 2011 and identified 10 additional papers. We ranked
the smells based on percent of total smells and compared it
against the ranking from the two survey papers. In Table VI we
report the percent based ranking.

TABLE VI. COMPARISON OF RANKINGS BASED ON OUR ANALYSIS AND
THE NUMBER OF RESEARCH PAPERS DEALING WITH A SMELL

Smell From Projects From Literature
Rank Freq. Rank Freq.

Data Clumps 1 22.05 7 5
Data Class 2 17.34 4 11
Cyclic Dependencies 3 11.39 10 2
Blob Operation 4 8.02 5 8
Duplication 5 17.84 1 25
Feature Envy 6 5.47 2 13
SAP Breakers 7 4.79 8 5
God Class 8 3.41 9 4
Intensive Coupling 9 2.78 8 5
Schizophrenic Class 10 1.99 8 5
Blob Class 11 1.47 5 8
Unstable Dependencies 12 1.27 8 5
Tradition Breaker 13 1.00 8 5
Refused Parent Bequest 15 0.64 3 12
Message Chains 16 0.38 8 5
Shotgun Surgery 17 0.16 6 8
Distorted Hierarchy 18 0.00 8 5
UnnecessaryCoupling 19 0.00 8 5

V. DISCUSSION

During our analysis we found that the overall number of
smells increase over the life of open source projects, as shown
in Figure 2. This is not to say that issues of design or technical
debt are not addressed over the life of the project, but as Figure
8 shows, it is simply a matter of new issues being introduced
faster than old ones are resolved. More importantly, as is also
evident from Figure 7, the pace of smell introduction
accelerates over the life of the project. This could be an artifact
of either projects adding new developers over time, thus having
some of the initial core design knowledge watered down, or
that as a project progresses and code builds up, it becomes
increasingly difficult to unravel fundamental design revisions,
or that an artifact of bad design decisions leading to further
compromises. While further research would be needed to look
into the nature of smells added and removed, we find it likely
that there is an element of all three dynamics at play here.

Next we looked at the types of design smells being
introduced, and found two general patters; those smells that
more or less monotonically increase over the life of the project,
and those that plateau at some point (see Figures 3, 4, 5 and 6).
For the monotonically increasing smells, the analysis seems
straightforward; some mistakes are made throughout the life of
the project, or some compromises in design breed other similar
compromises to be made later in the code. Most likely though,
these represent self-reinforcing patterns with projects; we’ve
used this structure or technique elsewhere in our code,
therefore it is OK to do so again. As a code-base grows, this
can have serious consequences, as previous research has shown
a correlation between smelly code and maintainability and
bugs [13, 25, 38]. All code smells in the Bloating category
show a growing tendency. This category is associated with
centralized control structures in object-oriented languages.
Arisholm et al. found that novice developers perform better
with centralized control styles [2], it is therefore possible that
novice contributors are pushing for these changes, or that they
are being introduced by regulars to make it easier for
newcomers to participate. Yamashita et al. found that a
considerable portion (32%) of developers did not know about
code smells [46] and only (4%) used specific code smell
detection tools with refactoring tools to remove smells. This
could explain the monotonic growth; once a smell is introduced
is unlikely to be identified or fixed.

The more interesting pattern is that of the smells that
plateau, or even decrease after an initial spike, which included
many of the smells in the OO Abusers category (Figure 5).
These smells are indicative of poor and unsustainable designs.
One possible interpretation of our findings is that they may
represent acceptable compromises for prototyping and getting
something out the door quickly, but that these design patterns
likely present serious roadblocks to the future growth and
success of the project. Developers facing such a situation are
forced to refactor the code, and moreover, according to
Yamashita et al., developers are more aware of this types of
smells [46], which likely leads to increased refactoring. On the
other hand, this pattern could just as easily be caused by
projects making all the OO design decisions early in the
projects lifecycle, with few if any such smells being added over
time because no OO design changes take place.

The slow increase and then dipping pattern seen for internal
and external duplication in the Dispensables category might be
caused by developers working under constraints such as
imposed deadlines or LOC-driven performance evaluations.
Another reasonable circumstance where developers duplicate
code is when they do not fully understand the problem or
solution. Duplication becomes a safer way of modifying code
rather than generalizing. As code-bases grow, it eventually
becomes difficult to add new functionality, and developers are
forced to refactor and remove duplication. Furthermore,
developers are aware of code duplication and its consequences.
Yamashita et al. found that duplicate code was the most
mentioned code smell in their survey [46]. This can also
explain why duplicate codes are refactored more often. We do
not really have data to support this, and further research is
needed to fully explain such trends.

We also found that some smells are essentially added and
removed on a near constant basis. In the Dispensables category
for instance, the Data Classes code smell was already found by
Khomh et al. as one of the most change prone code smells [22].
Possible reasons for such behavior is that coders are either
unaware of the perils of this design pattern, or that when
coding they do not realize when they are violating such design
practices (disconnect between theoretical knowledge and
practical), or that they fall into the trap of thinking that doing
this once won’t make a difference.

This to us is a clear sign that we need to do a better job
integrating smell analysis either into IDE environments or into
repository tools, not so much to block developers from using
undesirable patterns, but rather as a way of giving developers
feedback so they can reflect on the availability of better design
patterns and how bad design decisions accumulate over time.
We found that developers are not aggressively fixing design
issues, which can be explained by the findings of Yamashita et
al. who found that a considerable portion (32%) of surveyed
developers did not know about code smells [46]. It is therefore
conceivable that a majority of developers don’t actually know
when they are making poor implementation decisions. It’s also
obvious that these developers are unware of the issues such as
bugs [25, 38] and code maintainability problems [13] are
associated with code smells.

When tools are used, these do not always provide great
feedback for developers. Many of the tools we looked at give a
large number of false positives, an inherit issue with any kind
of static analysis tool [19]. Lack of visibility of the deduction
rules and thresholds of the metrics and context awareness
might be other reasons, as identified by Fontana et al. [12],
why the developer community remains skeptical and
uninterested in code smell analysis. Moreover, developers
don’t want to have their workflow disrupted by tools that do
not integrate well into their development process [19].
Moreover the current tools do not always align with the
problems projects struggle with. All these factors along with
developer unawareness about smells helps to explain why
developers don’t use code smell detection tools and also helps
to explain our observation why design issues build up over
time. Further research should look at making these tools more
accessible and relevant to real world programmers.

We did find that core developers introduce both more
smells and smell fixes than non-core developers, not an
unexpected finding given core developers predominance in the
world of coding. What was interesting though was that core
developers were no more likely to fix code smells (in
proportion to the size of their contributions) than non-core
developers. This was a surprise to us, as we expected core
developers to have a better understanding of both the
software’s high-level design and of best coding practices. This
turned out not to have a significant impact on the outcome of
their coding. While difficult to interpret, this to us leads us to
think that even among core contributors, understanding of
high-level design tradeoffs and/or the time to refactor code
may be in short supply.

We also found that the number of test cases does not show
any correlation with the design quality of the project. Although
the quality of test cases works as an indication of how well the
system is tested, it doesn’t give any indication about how bad
design in the project is. Though this was expected, as test cases
are written to identify bugs, not design issues, there was a
possibility that testing could be part of a bigger refactoring and
review process for code. Such activities would likely catch
many of the code smells we were documenting in this study.
We did not find evidence to support that testing indeed sparks
or goes hand in hand with such review activities.

We found that most of the code smells that were ranked
high by our analysis were not highly ranked in the research
literature (with the exception of duplication). While
understandable to a certain extent, common problems are not
always interesting problems, this shows a divide between the
world of theoreticians and practitioners which may further
drive the later away from the tools and practices we in
academia try to promote. More attention should be paid
towards analyzing the impact of high frequency real world
smells and making the tools more efficient in identifying these.
Alignment between the research and real world smell is
necessary for making code smell analysis acceptable to
everyone.

VI. THREATS TO VALIDITY

Our research findings may be subject to the concerns that
we list below. We have taken all possible steps to neutralize
the impacts of these possible threats, but some couldn’t be
mitigated and it’s possible that our mitigation strategies may
not have been effective.

Our samples have been from a single source - Github. This
may be a source of bias, and our findings may be limited to
open source programs from Github. Github’s selection
mechanisms favoring projects based on some unknown criteria
may be another source of error. However, we believe that the
large number of projects sampled more than adequately
addresses this concern.

 During our analysis we calculated the code smells
after each commit and categorized the commits into three
categories. There is always a chance that smells get introduced
over multiple commits. Categorizing individual commits into
these three categories poses the risk that, commits that actually
contributed a major portion towards introducing the smell but

did not actually led to crossing the threshold value will not be
identified as a smell introducing commit. Though this could
add some noise to our data, overall the risk is negligible;
eventually this threshold will be crossed and it will impact the
average. Over a sample of 220 projects, chances are that these
slight variations will have a relatively minor effect.

For our analysis we had to categorize contributors into core
and non-core contributors, for this categorization we had to set
a threshold based on the number of commits for each
contributor. It might be the case that some of the contributors
that were categorized as non-core contributor based on our
criteria were actually core contributors focusing on large
contributions rather than frequent contributions, or simply
focusing on architecture and high-level design (high value
contributions).

The smell detection tool we used uses a code metric and
threshold-based detection strategy. These metrics and
thresholds have been evaluated for their efficacy in a number
of previous studies. However, it has not been evaluated
whether their use is appropriate in all contexts. Hence, the
precise metrics and thresholds that it is appropriate to use may
vary depending on the context. We did not evaluate their
efficacy for use in our study. Hence, it may well be that
different metrics and values would have been more
appropriate. Moreover the tool we used uses static code
analysis to identify smells and research shows that code smells
that are “intrinsically historical” such as Divergent Change,
Shotgun Surgery and Parallel Inheritance are difficult to detect
by just exploiting static source code analysis [11]. So the
number occurrence of such "intrinsically historical" smells
should be different when historical information based smell
detection technique is used.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have tried to develop an understanding of
how design issues build up in an open source project over time,
and whether this build-up can be effectively mitigated or
controlled. We found strong evidence that design issues build
up over time. As the project grows older and bigger, design
issue are fixed less and as a consequence build up.

As expected, core contributors, being responsible for the
bulk of code contributions, were also responsible for the bulk
of smells being introduced. Though they are also responsible
for removing most of the smells that are removed, they were
not significantly better at doing so than non-core contributors.
This was surprising given core contributors’ deeper
understanding of the project, and opportunity to remove smells
through significant refactoring. This leads us to suspect that
rather than due to a concerted effort, a large number of code
smells must be removed accidentally or as part of ad-hoc code
review. Further qualitative studies should provide insight and
conclusive reasons behind the identified patterns.

In line with previous observations, we also found that a
project's testedness is not an indicator of design quality.
Though this is not unexpected, it is another indicator that
developers are paying more attention to removing and
identifying bugs rather than refactoring. Current tool-sets and
techniques are not tailored towards identifying design issues

however, which may in part explain why these problems are
difficult to tackle for projects.

We also found that there is a mismatch between many of
the most frequently occurring code smells and the most popular
code smells in the research literature, with many of the
common problems encountered in real life seeing relatively
little research. More focus should be given to the code smells
that occur frequently if we want to tackle the issue of technical
debt in real-world projects.

In our analysis, we didn't consider factors such as the
number of contributors or the size of the project, which have
been proven to contribute towards design issues. It would be
interesting to do a large scale longitudinal study where all these
factors are considered in the analysis to try to identify the
relationship between these factors and code smells, and see if
the resulting models are different from the models identified by
analyzing single snapshots of the projects.

Finally, we conclude by mentioning that our finding along
with the findings of other researchers provides evidence for the
theory that developers in general are not very conscious about
fixing design issues. The researcher community should try to
make this easier by improving tools, including a focus on the
more common code smells, which are sometimes ignored in
the research literature.

ACKNOWLEDGMENT

We would like to thank the Oregon State University HCI
group for their input and feedback on the research.

REFERENCES

[1] Apache Software Foundation. Apache maven project.

http://maven.apache.org

[2] Arisholm, E., & Sjoberg, D. I. (2004). “Evaluating the effect of a
delegated versus centralized control style on the maintainability of
object-oriented software”. In IEEE Transactions on Software
Engineering, (pp.521-534).

[3] Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information
retrieval (Vol. 463). New York: ACM press.

[4] Booch, G. (2006). “Object Oriented Analysis & Design with
Application”. Pearson Education India.

[5] Chatzigeorgiou, A., & Manakos, A. (2010, September). “Investigating
the evolution of bad smells in object-oriented code”. In Proceedings of
the Seventh International Conference on the Quality of Information and
Communications Technology (QUATIC), (pp. 106-115).

[6] Cunningham, W. (1992, December). “The WyCash portfolio
management system”. In ACM SIGPLAN OOPS Messenger, Vol. 4, No.
2, (pp. 29-30).

[7] Deligiannis, I.; Shepperd, M.; Roumeliotis, M.; Stamelos, I. (2004). “An
empirical investigation of an object-oriented design heuristic for
maintainability”. In The Journal of Systems and Software 72 (2),
(pp.129-143).

[8] Deligiannis, Ignatios; Stamelos, Ioannis; Angelis, Lefteris; Roumeliotis,
Manos; Shepperd, Martin (2003, February). “A controlled experiment
investigation of an object oriented design heuristic for maintainability”
In Journal of Systems and Software, Vol.65, No .2, (pp.127-139).

[9] De Souza, L. B. L., & Maia, M. D. A. (2013, May). Do software
categories impact coupling metrics?. In Proceedings of the 10th
Working Conference on Mining Software Repositories (pp. 217-220).
IEEE Press.

[10] Du Bois, B., Demeyer, S., Verelst, J., Mens, T., & Temmerman, M.
(2006). “Does god class decomposition affect comprehensibility?” In

Proceedings of the IASTED Conf. on Software Engineering (pp. 346-
355).

[11] F. Palomba, G. Bavota, M. Di Penta, R.Oliveto, A. De Lucia, D.
Poshyvanyk.(2013) “Detecting Bad Smells in Source Code Using
Change History Information”. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering.

[12] Fontana, F. A., Mariani, E., Morniroli, A., Sormani, R., & Tonello, A.
(2011). “An experience report on using code smells detection tools”. In
Software Testing, Verification and Validation Workshops (ICSTW), (pp.
450-457).

[13] Fowler, M. (2002). “Refactoring: improving the design of existing
code”. Pearson Education India.

[14] Gopinath, R., Jensen, C., & Groce, A. (2014, May). “Code coverage for
suite evaluation by developers. In Proceedings of the 36th International
Conference on Software Engineering (pp. 72-82).

[15] H. Coles. “Pit mutation testing”. http://pittest.org/

[16] InFusion, http://www.intooitus.com/inFusion.html.

[17] Izurieta, C., & Bieman, J. M. (2007, September). How software designs
decay: A pilot study of pattern evolution. In Empirical Software
Engineering and Measurement, 2007. ESEM 2007. First International
Symposium on (pp. 449-451). IEEE.

[18] Izurieta, C., & Bieman, J. M. (2008, April). Testing consequences of
grime buildup in object oriented design patterns. In Software Testing,
Verification, and Validation, 2008 1st International Conference on (pp.
171-179). IEEE.

[19] Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013, May).
“Why don't software developers use static analysis tools to find bugs?”.
In Proceedings of the 2013 International Conference on Software
Engineering (pp. 672- 681).

[20] Kagdi, H., Collard, M. L., & Maletic, J. I. (2007). “A survey and
taxonomy of approaches for mining software repositories in the context
of software evolution”. In Journal of Software Maintenance and
Evolution: Research and Practice, Vol.19, No. 2, (pp. 77-131).

[21] Kagdi, H., Gethers, M., Poshyvanyk, D., & Collard, M. L. (2010,
October). “Blending conceptual and evolutionary couplings to support
change impact analysis in source code”. In 17th Working Conference on
Reverse Engineering, (pp. 119-128).

[22] Khomh, F., Di Penta, M., & Gueheneuc, Y. (2009, October). “An
exploratory study of the impact of code smells on software change-
proneness”. In 16th Working Conference on Reverse Engineering, (pp.
75-84).

[23] Lanza, M., & Marinescu, R. (2007). “Object-oriented metrics in
practice: using software metrics to characterize, evaluate, and improve
the design of object-oriented systems”. Springer Science & Business
Media.

[24] Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., & Turski, W.
M. (1997, November). “Metrics and laws of software evolution-the
nineties view”. In Proceedings of Fourth International Software Metrics
Symposium, (pp. 20-32).

[25] Li, W., & Shatnawi, R. (2007)." An empirical study of the bad smells
and class error probability in the post-release object-oriented system
evolution". In Journal of Systems and Software, Vol.80, No.7, (pp.1120-
1128)

[26] M. Doliner and Others. Cobertura - a code coverage utility for java.
http://cobertura.github.io/cobertura

[27] Mäntylä, M. (2003). "Bad smells in software-a taxonomy and an
empirical study". Helsinki University of Technology.

[28] Mäntylä, M., Vanhanen, J., & Lassenius, C. (2003, September). A
taxonomy and an initial empirical study of bad smells in code. In
Proceedings of the 19th International Conference on Software
Maintenance (ICSM 2003). Amsterdam, The Netherlands. (pp 381-384).

[29] Marinescu, C., Marinescu, R., Mihancea, P. F., & Wettel, R. (2005).
“iPlasma: An integrated platform for quality assessment of object-
oriented design”. In ICSM (Industrial and Tool Volume).

[30] Marinescu, R. (2001). “Detecting design flaws via metrics in object-
oriented systems”. In Proceedings of 39th International Conference and

Exhibition on Technology of Object-Oriented Languages and Systems,
(pp.173-182).

[31] Marinescu, R. (2004, September). “Detection strategies: Metrics-based
rules for detecting design flaws”. In Proceedings of 20th IEEE
International Conference on Software Maintenance.(pp. 350-359).

[32] Marticorena, R., López, C., & Crespo, Y. (2006). “Extending a
taxonomy of bad code smells with metrics”. In Proceedings of 7th
International Workshop on Object-Oriented Reengineering (WOOR),
(pp. 6).

[33] Martin, R. C. (2003). “Agile software development: principles, patterns,
and practices”. Prentice Hall PTR.

[34] Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies
of open source software development: Apache and Mozilla. ACM
Transactions on Software Engineering and Methodology (TOSEM),
11(3), 309-346.

[35] Moha, N., Rezgui, J., Guéhéneuc, Y. G., Valtchev, P., & El Boussaidi,
G. (2008). “Using FCA to suggest refactorings to correct design
defects”. In Concept Lattices and Their Applications (pp. 269-275).
Springer Berlin Heidelberg.

[36] Murphy-Hill, E., & Black, A. P. (2010). “An interactive ambient
visualization for code smells”. In Proceedings of 5th international
symposium on Software visualization (pp. 5-14).

[37] Olbrich, S. M., Cruzes, D. S., & Sjoberg, D. I. (2010). “Are all code
smells harmful? A study of God Classes and Brain Classes in the
evolution of three open source systems”. In Proceedings of ICSM, (pp.
1-10).

[38] Olbrich, S., Cruzes, D. S., Basili, V., & Zazworka, N. (2009, October).
“The evolution and impact of code smells: A case study of two open
source systems”. In Proceedings of the 2009 3rd international
symposium on empirical software engineering and measurement (pp.
390-400).

[39] Oliva, G. A., Steinmacher, I., Wiese, I., & Gerosa, M. A. (2013,
August). “What can commit metadata tell us about design
degradation?”. In Proceedings of the 2013 International Workshop on
Principles of Software Evolution (pp. 18-27).

[40] R. Liesenfeld. JMockit - A developer testing toolkit for Java.
http://code.google.com/p/jmockit/

[41] Riel, A. J. (1996). “Object-oriented design heuristics”, Vol. 335.
Reading: Addison-Wesley.

[42] Schumacher, J., Zazworka, N., Shull, F., Seaman, C., & Shaw, M.
(2010, September). “Building empirical support for automated code
smell detection”. In Proceedings of the International Symposium on
Empirical Software Engineering and Measurement (p. 8). ACM.

[43] Sjoberg, D. I., Yamashita, A., Anda, B. C. D., Mockus, A., & Dyba, T.
(2013). Quantifying the effect of code smells on maintenance effort.
Software Engineering, IEEE Transactions on, 39(8), 1144-1156.

[44] Smith, C. U., & Williams, L. G. (2000). “Software performance anti-
patterns.” In Proceedings of the Workshop on Software and
Performance (pp. 127-136).

[45] V. Roubtsov and Others. Emma - a free java code coverage tool.
http://emma.sourceforge.net/

[46] Yamashita, A., & Moonen, L. (2013, October). “Do developers care
about code smells? An exploratory survey”. In Proceedings of the 20th
Working Conference on Reverse Engineering (WCRE), (pp. 242-251).

[47] Zazworka, N., Shaw, M. A., Shull, F., & Seaman, C. (2011, May).
“Investigating the impact of design debt on software quality”. In
Proceedings of the 2nd Workshop on Managing Technical Debt (pp. 17-
23).I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[48] Zhang, M., Hall, T., & Baddoo, N. (2011). Code bad smells: a review of
current knowledge. Journal of Software Maintenance and Evolution:
research and practice, 23(3), 179-202

